Cite

1. Qiang X., Bijlaard F., Kolstein H.: Elevated-temperature mechanical properties of high strength structural steel S460N: Experimental study and recommendations for fire-resistance design. Fire Safety Journal. 55 (2013), 15-21.Search in Google Scholar

2. Topaç M.M., Günal H., Kuralay N.S.: Fatigue failure prediction of a rear axle housing prototype by using finite element analysis. Engineering Failure Analysis. 16(5) (2009), 1474-1482.10.1016/j.engfailanal.2008.09.016Search in Google Scholar

3. Omajane J., Martikainen J., Kah P.: Weldability of thermo-mechanically rolled steels used in oil and gas offshore structures. The International Journal of Engineering And Science. 3(5) (2014), 62-69.Search in Google Scholar

4. Skowrońska B., Szulc J., Chmielewski T., Sałaciński T., Świercz R.: Properties and microstructure of hybride Plasma+MAG welded joints of thermomechanically treated S700MC steel, 27th Anniversary International Conference on Metallurgy and Materials (METAL), Brno, Czech Republik, 2018.Search in Google Scholar

5. Pańcikiewicz K., Tuz L., Żurek Z., Rakoczy Ł.: Optimization of filler metals consumption in the production of welded steel structures. Advances in Materials Science. 16(1) (2016), 27-34.10.1515/adms-2016-0003Search in Google Scholar

6. Sajek A., Nowacki J.: Comparative evaluation of various experimental and numerical simulation methods for determination of t8/5 cooling times in HPAW process weldments. Archives of Civil and Mechanical Engineering. 18(2) (2018), 583-591.10.1016/j.acme.2017.10.001Search in Google Scholar

7. Górka J.: Assessment of steel subjected to thermomechanical control process with respect to weldability. Metals. 3(3) (2018), 169.10.3390/met8030169Search in Google Scholar

8. Łabanowski J., Prokop-Strzelczyńska K., Rogalski G., Fydrych D: The effect of wet underwater welding on cold cracking susceptibility of duplex stainless steel. Advances in Materials Science. 16(2) (2016), 68-77.10.1515/adms-2016-0010Search in Google Scholar

9. Li H. L., Liu D., Guo N., Chen H., Du Y. P., Feng J. C.: The effect of alumino-thermic addition on underwater wet welding process stability. Journal of Materials Processing Technology. 245 (2017), 149-156.Search in Google Scholar

10. Purnama D., Winarto W., Susilo F.H.: Mechanical properties of underwater wet welded marine steel plates using different low hydrogen electrodes. AIP Conference Proceedings 1977, 030015 (2018), 1-5.Search in Google Scholar

11. Yin Y., Yang X., Cui L., Cao J., Xu W.: Microstructure and mechanical properties of underwater friction taper plug weld on X65 steel with carbon and stainless steel plugs. Science and Technology of Welding and Joining. 21(4) (2016), 259-266.10.1179/1362171815Y.0000000089Search in Google Scholar

12. Heirani F., Abbasi A., Ardestani M.: Effects of processing parameters on microstructure and mechanical behaviors of underwater friction stir welding of Al5083 alloy. Journal of Manufacturing Processes. 25 (2017), 77-84.Search in Google Scholar

13. Rogalski G., Fydrych D., Łabanowski J.: Underwater wet repair welding of API 5L X65M pipeline steel. Polish Maritime Research. SI 24 (93) (2017), 188-194.10.1515/pomr-2017-0038Search in Google Scholar

14. Chen H., Guo N., Shi X., Du Y., Feng J., Wang G.: Effect of water flow on the arc stability and metal transfer in underwater flux-cored wet welding. Journal of Materials Processing Technology. 31 (2018), 103-115.Search in Google Scholar

15. Shi Y., Hu Y., Yi Y., Lin S., Li Z.: Porosity and microstructure of underwater wet FCAW of duplex stainless steel. Metallography, Microstructure, and Analysis. 6(5) (2017), 383-389.10.1007/s13632-017-0376-3Search in Google Scholar

16. Fydrych D., Łabanowski J., Tomków J., Rogalski G.: Cold cracking of underwater wet welded S355G10+N high strength steel. Advances in Materials Science. 15(3) (2015), 48-56.10.1515/adms-2015-0015Search in Google Scholar

17. Maksimov S.Y.: Underwater arc welding of higher strength low-alloy steels. Welding International. 24(6) (2010), 49-54.10.1080/09507110903464820Search in Google Scholar

18. Cheng F., Hu S., Gao W., Deng C., Wang D., Jing H.: Diffusible hydrogen content and microstructure characteristic in the joint by underwater shielded metal arc welding. Transactions of the China Welding Institution. 35(9) (2014), 45-48.Search in Google Scholar

19. Świerczyńska A., Fydrych D., Rogalski G.: Diffusible hydrogen management in underwater wet self-shielded flux cored arc welding. International Journal of Hydrogen Energy. 42(38) (2017), 24532-24540.10.1016/j.ijhydene.2017.07.225Search in Google Scholar

20. Fydrych D., Świerczyńska A., Tomków J.: Diffusible hydrogen control in flux cored arc welding process. Key Engineering Materials. 597 (2014), 171-178.Search in Google Scholar

21. Schaupp T., Rhode M., Kannengiesser T.: Influence of welding parameters on diffusible hydrogen content in high-strength steel welds using modified spray arc process. Welding in the World. 62(1) (2018), 9-18.10.1007/s40194-017-0535-9Search in Google Scholar

22. Pandey C., Mahapatra M., Kumar P., Saini N.: Effect of weld consumable condition of the diffusible hydrogen and subsequent residual stress and flexural strength on multipass welded P91 steels. Metallurgical and Materials Transactions B. 49 (2018), 2881.10.1007/s11663-018-1314-8Search in Google Scholar

23. Hanzaei A. T., Marashi S. P. H., Ranjbarnodeh E.: The effect of hydrogen content and welding conditions on the hydrogen induced cracking of the API X70 steel weld. International Journal of Hydrogen Energy. 43(19) (2018), 9399-9407.10.1016/j.ijhydene.2018.03.216Search in Google Scholar

24. Li H., Liu D., Dong Y., Yan Y., Guo N., Feng J.: Microstructure and mechanical properties of underwater wet welded high-carbon-equivalent steel Q460 using austenitic consumables. Journal of Materials Processing Technology. 249 (2017), 149-157.Search in Google Scholar

25. Zhang H.T., Dai X.Y., Feng J.C., Hu L.L.: Preliminary investigation on real-time induction heating-assisted underwater wet welding. Welding Journal. 1(2015), 8-15.Search in Google Scholar

26. Wang J., Sun Q., Jiang Y., Zhang T., Ma J., Feng J: Analysis and improvement of underwater wet welding process stability with static mechanical constraint support. Journal of Manufacturing Processes. 34 (2018), 238-250.Search in Google Scholar

27. Wang J., Sun Q., Laijun W., Liu Y., Teng J., Feng J.: Effect of ultrasonic vibration on microstructural evolution and mechanical properties of underwater wet welding joint. Journal of Materials Processing Technology. 246 (2017), 157-197.Search in Google Scholar

28. Tomków J., Rogalski G., Fydrych D., Łabanowski J.: Improvement of S355G10+N steel weldability in water environment by Temper Bead Welding. Journal of Materials Processing Technology. 262 (2018), 372-381.Search in Google Scholar

29. Aloraier A., Ibrahim R., Thomson P.: FCAW process to avoid the use of post weld heat treatment: International Journal of Pressure Vessels and Piping. 83(5) (2006), 394-398.10.1016/j.ijpvp.2006.02.028Search in Google Scholar

30. Fydrych D., Świerczyńska A., Rogalski G., Łabanowski J.: Temper bead welding of S420G2+M steel in water environment. Advances in Materials Science. 16(4) (2016), 5-16.10.1515/adms-2016-0018Search in Google Scholar

31. Tomków J., Łabanowski J., Fydrych D., Rogalski G.: Cold cracking of S460N steel welded in water environment. Polish Maritime Research. 25, 3 (99) (2018), 131-13610.2478/pomr-2018-0104Search in Google Scholar

32. Schröter F., Lehnert T.: Trends in the application of high-performance steel in European bridge building. The Eight International Conference „Bridges in Banube Basin”. (2013), 33-50.10.1007/978-3-658-03714-7_2Search in Google Scholar

eISSN:
2083-4799
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, Functional and Smart Materials