Open Access

Cavitation Erosion – Phenomenon and Test Rigs


Cite

1. Karimi A., Martin J.L.: Cavitation erosion of materials. International Metals Reviews 31 (1986), pp. 1-26.Search in Google Scholar

2. Hubballi V., Sondur V.: A Review on the prediction of cavitation erosion inception in hydraulic control Valves. International Journal of Emerging Technology and Advanced Engineering 3 (2013), 110-119.Search in Google Scholar

3. Bourne N.K.: On impacting liquid jets and drops onto polymethylmethacrylate targets, Proc. R. Soc. A (2005) 461, 1129–114510.1098/rspa.2004.1440Search in Google Scholar

4. Kuiper G.: Cavitation research and ship propeller design, Applied Scientific Research (1998) 58, 33–50.10.1007/978-94-011-4986-0_3Search in Google Scholar

5. Dular M., Stoffel B., Sirok B., Development of a cavitation erosion model. Wear 261 (2006) 642-655.Search in Google Scholar

6. Brennen Ch.E.: Cavitation and bubble Dynamics. Oxford University Press, New York, 1977.Search in Google Scholar

7. Śniegocka B., Szkodo M., Chmiel J.: Influence of spatial structures of 316L stainless steel on its cavitation resistance. Solid State Phenomena 225 (2015) 109-114.Search in Google Scholar

8. Wójs K.: Kawitacja w cieczach o różnych właściwościach reologicznych. A. Kaczak [ed.], Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 2004. (in Polish)Search in Google Scholar

9. Knapp R. T., Daily J. W., Hammit F.G.: Cavitation, McGraw-Hill, New York 1970.Search in Google Scholar

10. Lauterborn W., Bolle H.: Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary. J. Fluid Mech. 72, part 2 (1975) 391-399.Search in Google Scholar

11. Lindau O., Lauterborn W.: Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall, J. Fluid Mech. (2003), vol. 479 327–348.Search in Google Scholar

12. Philipp, A., Lauterborn, W.: Cavitation erosion by single laser-produced bubbles. J. Fluid Mech. 361 (1998) 75–116.Search in Google Scholar

13. Kim K., Chahine G. L., Franc J.-P., Karimi A.: Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction. Kim K., Chahine G. L., Franc J.-P., Karimi A. [eds], Springer International Publishing, Dordrecht, 2014.10.1007/978-94-017-8539-6Search in Google Scholar

14. Laterborn W.: Cavitation and Coherent Optics, 1980, Proc. Of the 1st. International Cnference, Göttingen, Fed. Rep. Of Germany, 1979, 3-12.10.1007/978-3-642-51070-0_1Search in Google Scholar

15. Steller J., Gireń G.: International Cavitation Erosion Test. Final report. Zeszty Naukowe IMP PAN, Gdańsk, 2015.Search in Google Scholar

16. Jasionowski R.: Badania odporności materiałów na erozję kawitacyjną, Cz. I Stanowiska badawcze. Zeszyty Naukowe WSM Szczecin nr 72, Szczecin 2003. (in Polish)Search in Google Scholar

17. Kmieć M., Karpiński B., Szkodo M.: Cavitation erosion of P110 steel in different drilling muds. Advances in Materials Science 16 (2016) 57-66.Search in Google Scholar

18. Li Z., Han J., Lu J., Zhou J., Chen J.: Vibratory cavitation erosion behavior of AISI 304 stainless steel in water at elevated temperatures. Wear 321 (2014) 33-37.Search in Google Scholar

19. Mitelea I., Bordeasu I., Pelle M., Craciunescu C.: Ultrasonic cavitation erosion of nodular cast iron with ferrite-pearlite microstructure. Ultrasonics Sonochemistry 23 (2015) 385-390.Search in Google Scholar

20. Niederhofer P., Huth S.: Cavitation erosion resistance of high intersitial CrMnCN austenitic stainless steel. Wear 301 (2013) 457-466.Search in Google Scholar

21. Kim S-J., Lee S-J., Chong S-O.: Electrochemical characteristics under cavitation-erosion for STS 316L in seawater. Materials Research Bulletin 58 (2014) 244-247Search in Google Scholar

22. Wu J-h., Wang Y., Ma F., Gou W-j. Cavitation erosion in bloods. Journal of Hydrodynamics, Ser. B, 29 (2017) 724-727.Search in Google Scholar

23. Gottardi G., Tocci M., Montesano L., Pola A.: Cavitation erosion behaviour of an innovative aluminium alloy for Hybrid Aluminium Forging, Wear 394–395 (2018) 1-10.Search in Google Scholar

24. Hu H.X., Zheng Y.G.: The effect of sand particle concentrations on the vibratory cavitation erosion. Wear 384–385 (2017) 95-105.Search in Google Scholar

25. Momma T.: Cavitation Loading and Erosion Produced by a Cavitating Jet. PhD thesis, Nottingham, 1991.Search in Google Scholar

26. Lichtarowicz, A. and Sakkejha, F., “Cutting with Cavitating Jets,” Paper G6, Proc. 1st Int. Symp. Jet Cutting Tech., BHRA, Coventry, UK, April 1972Search in Google Scholar

27. Hutli E., Nedeljkovic M.S., Radovic N.A., Bonyár A., The relation between the high speed submerged cavitating jet behaviour and the cavitation erosion process, International Journal of Multiphase Flow 83 (2016) 27–38.10.1016/j.ijmultiphaseflow.2016.03.005Search in Google Scholar

28. Lipej A.: Cavitation and dynamic problems. S. Muhic (ed), 6th IAHR meeting of the Working Group, IAHRWG 2015, Slovenia, September 9-11, 2015.Search in Google Scholar

29. Thapa B., Chaudhary P., Dahlhaug O., Upadhyay P.: Study of combined effect of sand erosion and cavitation in hydraulic turbines. Proc. International Conference on Small Hydropower, Sri Lanka, 2007, 22-24.Search in Google Scholar

30. Hutli E. A. F., Nedeljković M.S.: Investigation of a Submerged Cavitation Jet Behaviour: Part One-The Phenomenon, Detection Technique and Sono-Luminescence. FME Transactions vol. 35 (2007) 113-119.Search in Google Scholar

31. Hutli E. A. F., Nedeljković M.S.: Investigation of a Submerged Cavitation Jet Behaviour: Part Two – Influences of operating conditiond, geometrical parameters and arrangements of detection system. FME Transactions vol. 35 (2007) 121-128.Search in Google Scholar

32. Soyama H.: Effect of nozzle geometry on a standard cavitation erosion test using a cavitating jet, Wear 297 (2013) 895–902Search in Google Scholar

33. Peng Ch., Tian S., Li G.: Joint experiments of cavitation jet: High-speed visualization and erosion test. Ocean Engineering 149 (2018) 1-13.Search in Google Scholar

34. Steller J.: International Cavitation Erosion Test and quantitative assessment of material resistance to cavitation. Wear 233–235 (1999) 51 – 64.Search in Google Scholar

35. Veerabhadra R., Syamala Rao B., Buckley D.H.: Size scale effect in cavitation erosion. Proc. Cavitation and Multiphase Flow Forum, Louisiana, 1984, 11-17.Search in Google Scholar

36. Dular M., Petkovšek M., On the mechanisms of cavitation erosion – Coupling high speed videos to damage patterns, Experimental Thermal and Fluid Science 68 (2015) 359-370.10.1016/j.expthermflusci.2015.06.001Search in Google Scholar

37. He J., Hammitt F. G.: Comparision of cavitation erosion test results from venturi and vibratory facilities. Wear vol. 76 (1982) 269–292.Search in Google Scholar

38. Krella A.: The experimental resistance parameter for TiN coating to cavitation action. Advances in Materials Science 10 (23) (2010) 4-18Search in Google Scholar

39. Dular M., Stoffel B., Širok B.: Development of a cavitation erosion model. Wear 261 (2006) 42-655.Search in Google Scholar

40. Hart D., Whale D.: A review of cavitation-erosion resistance weld surfacing alloys for hydroturbines. Eutectic Cast. Pty. Ltd. (2007) 15-30.Search in Google Scholar

41. Mann B.S.: Boronizing of cast martensitic chromium nickel stainless steel and its abrasion and cavitation-erosion behavior. Wear v.208 (1997), 125-131.10.1016/S0043-1648(96)07374-7Search in Google Scholar

42. Bazanini G., Bressan J. D., Klems M.A.: Cavitation erosion wear of metallic specimens using the new compact rotating disk device. Thermal Engineering Vol. 7 (2008), 31-36.Search in Google Scholar

43. Rashed M.K., Abdulbari H.A., Salled M.A., Ismail M.H.: Rotating disc apparatus: types, developments and future applications. Modern Applied Science 10 (2016) 198-229.Search in Google Scholar

eISSN:
2083-4799
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, Functional and Smart Materials