Open Access

Synthesis, Characterization and Their Antimicrobial Activities of Boron Oxide/Poly(Acrylic Acid) Nanocomposites: Thermal and Antimicrobial Properties


Boron oxide (B2O3)/Poly(acrylic acid) (PAA) nanocomposites were synthesized by solution intercalation method, and characterized by Fourier transform infrared spectroscopy (FTIR-ATR), transmission electron microscopy (TEM), X-ray diffraction and thermogravimetric analysis (DTA/TG). The effect of boron oxide amount on the thermal stability of nanocomposites was investigated. Moreover, the antimicrobial activities of them were also determined by the serial dilution method against E. coli and S. aureus. XRD analysis showed that boron oxide was homogenously dispersed in polymer matrix; FTIR-ATR that there was interaction between PAA and boron oxide; and TEM that boron oxide particles had spherical structure, and dispersed in nano size in polymer matrix; DTA/TG that the thermal stability of polymers increased with the adding of boron oxide into polymer matrix, and changed the decomposition mechanism of PAA. B2O3/PAA nanocomposites exhibited higher decomposition temperature. The decomposition mechanisms of PAA and its nanocomposites occurred through three decomposition steps; dehydration, decarboxylation and chain scission. B2O3/PAA nanocomposites showed greater antimicrobial activity with increasing B2O3 amount.

Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, Functional and Smart Materials