1. bookVolume 67 (2017): Issue 2 (June 2017)
Journal Details
First Published
25 Mar 2014
Publication timeframe
4 times per year
access type Open Access

Different pathways involved in the stimulatory effects of homocysteine on rat duodenal smooth muscle

Published Online: 26 Jun 2017
Volume & Issue: Volume 67 (2017) - Issue 2 (June 2017)
Page range: 254 - 270
Received: 21 Jul 2016
Accepted: 03 Feb 2017
Journal Details
First Published
25 Mar 2014
Publication timeframe
4 times per year

Recent studies have confirmed that hyperhomocysteinemia is associated with gastrointestinal diseases; however, the direct effect of homocysteine on gastrointestinal reactivity still remains unknown. The aim of this study was to demonstrate how homocysteine may affect nitric oxide mediated duodenal relaxation and whether cholinergic receptors and K+ channels take part in stimulating motility, as well as to explore whether oxidative stress is associated with homocysteine-mediated effects. Experiments were carried out on male rats, body mass 250-300 g. Two groups of animals were treated by i.p. application of saline and D,L-Hcy (0.6 μmol/g bm). After 2h of incubation, the duodenal segments were prepared for biochemical analysis and contractile response measurements in an organ bath with Tyrode’s solution. Effects of TEA (10 mmol/L) and L-NAME (30 μmol/L) on duodenal contractility in the presence of D,L-Hcy (0.6 μmol/g bm) were investigated. Elevated homocysteine levels seem to be of crucial importance for the deterioration of contractility through nitric oxide mediated relaxation, and, in part, by activation of K+ channels. Hcy showed direct promuscarinic effects, since 30 min pretreatment of rat duodenum significantly enhanced the contractile effect of increasing concentrations of ACh (10−9-10−2 mol/L). Catalase activity, superoxide dismutase, glutathione peroxidase and the total antioxidant system were reduced while the thiobarbituric acid-reactive substances level was elevated. Our data showed a consistent profile of gastrointestinal injury elicited by sulfur-containing amino acid-homocysteine. This could contribute to explain, at least in part, the mechanisms involved in human gastrointestinal diseases associated to hyperhomocysteinemia.


1. Finkelstein JD. Pathways and regulation of homocysteine metabolism in mammals. Semin Thromb Hemost. 2000;26(3):219-225.10.1055/s-2000-846611011839Search in Google Scholar

2. Han L, Wu Q, Wang C, et al. Homocysteine, ischemic stroke, and coronary heart disease in hypertensive patients: A population-based, prospective cohort study. Stroke. 2015;46(7):1777-1786.10.1161/STROKEAHA.115.00911126038522Search in Google Scholar

3. Chao MC, Hu SL, Hsu HS, et al. Serum homocysteine level is positively associated with chronic kidney disease in a Taiwan Chinese population. J Nephrol. 2014;27(3):299-305.10.1007/s40620-013-0037-924430766Search in Google Scholar

4. Erzin Y, Uzun H, Celik AF, Aydin S, Dirican A, Uzunismail H. Hyperhomocysteinemia in inflammatory bowel disease patients without past intestinal resections: correlations with cobalamin, pyridoxine, folate concentrations, acute phase reactants, disease activity, and prior thromboembolic complications. J Clin Gastroenterol. 2008;42(5):481-486.10.1097/MCG.0b013e318046eab018344891Search in Google Scholar

5. Oussalah A, Guéant JL, Peyrin-Biroulet L. Meta-analysis: hyperhomocysteinaemia in inflammatory bowel diseases. Aliment Pharmacol Ther. 2011;34(10):1173-1184.10.1111/j.1365-2036.2011.04864.x21967576Search in Google Scholar

6. Sartor RB. Mechanisms of disease: pathogenesis of Crohn’s disease and ulcerative colitis. Nat Clin Pract Gastroenterol Hepatol. 2006;3(7):390-407.10.1038/ncpgasthep052816819502Search in Google Scholar

7. Jiang Y, Zhao J, Xu CL, et al. The relationship of methylenetetrahydrofolate reductase G1793A gene polymorphism, hyperhomocysteinaemia and ulcerative colitis. Zhonghua Nei Ke Za Zhi. 2010;49(8):675-679.Search in Google Scholar

8. Morgenstern I, Raijmakers MT, Peters WH, Hoensch H, Kirch W. Homocysteine, cysteine, and glutathione in human colonic mucosa: elevated levels of homocysteine in patients with inflammatory bowel disease. Dig Dis Sci. 2003;48(10):2083-2090.10.1023/A:1026338812708Search in Google Scholar

9. Danese S, Semeraro S, Papa A, et al. Extraintestinal manifestations in inflammatory bowel disease. World J Gastroenterol. 2005;11(46):7227-7236.10.3748/wjg.v11.i46.7227472514216437620Search in Google Scholar

10. Akbulut S, Altiparmak E, Topal F, Ozaslan E, Kucukazman M, Yonem O. Increased levels of homocysteine in patients with ulcerative colitis. World J Gastroenterol. 2010;16(19):2411-2416.10.3748/wjg.v16.i19.2411287414720480528Search in Google Scholar

11. Casella G, Bassotti G, Villanacci V, et al. Is hyperhomocysteinemia relevant in patients with celiac disease? World J Gastroenterol. 2011;17(24):2941-2944.10.3748/wjg.v17.i24.2941312950821734805Search in Google Scholar

12. Miller JW, Beresford SA, Neuhouser ML, et al. Homocysteine, cysteine, and risk of incident colorectal cancer in the Women’s Health Initiative observational cohort. Am J Clin Nutr. 2013;97(4):827-834.10.3945/ajcn.112.049932Search in Google Scholar

13. Peyrin-Biroulet L, Guéant-Rodriguez RM, Chen M, Bronowicki JP, Bigard MA, Guéant JL. Association of MTRR 66A>G polymorphism with superoxide dismutase and disease activity in patients with Crohn’s disease. Am J Gastroenterol. 2008;103(2):399-406.10.1111/j.1572-0241.2007.01573.xSearch in Google Scholar

14. Phelip JM, Ducros V, Faucheron JL, Flourie B, Roblin X. Association of hyperhomocysteinemia and folate deficiency with colon tumors in patients with inflammatory bowel disease. Inflamm Bowel Dis. 2008;14(2):242-248.10.1002/ibd.20309Search in Google Scholar

15. Givvimani S, Munjal C, Narayanan N, et al. Hyperhomocysteinemia decreases intestinal motility leading to constipation. Am J Physiol Gastrointest Liver Physiol. 2012;303(3):281-290.10.1152/ajpgi.00423.2011Search in Google Scholar

16. Sturtzel B, Dietrich A, Wagner KH, Gisinger C, Elmadfa I. The status of vitamins B6, B12, folate, and of homocysteine in geriatric home residents receiving laxatives or dietary fiber. J Nutr Health Aging. 2010;14(3):219-223.10.1007/s12603-010-0053-6Search in Google Scholar

17. Stojanović M, Šćepanović L, Hrnčić D, Rašić-Marković A, Djuric D, Stanojlović O. Multidisciplinary approach to nitric oxide signaling: Focus on the gastrointestinal and the central nervous system. Vojnosanit Pregl. 2015;72(7):619-624.10.2298/VSP131025051SSearch in Google Scholar

18. Gally JA, Montague PR, Reeke GN Jr, Edelman GM. The NO hypothesis: possible effects of a short-lived, rapidly diffusible signal in the development and function of the nervous system. Proc Natl Acad Sci U S A. 1990;87(9):3547-3551.10.1073/pnas.87.9.3547Search in Google Scholar

19. Nichols K, Krantis A, Staines W. Histochemical localization of nitric oxide-synthesizing neurons and vascular sites in the guinea-pig intestine. Neuroscience. 1992;51(4):791-799.10.1016/0306-4522(92)90520-CSearch in Google Scholar

20. Nichols K, Staines W, Krantis A. Nitric oxide synthase distribution in the rat intestine: a histochemical analysis. Gastroenterology. 1993;105(6):1651-1661.10.1016/0016-5085(93)91060-USearch in Google Scholar

21. Nichols K, Staines W, Wu JY, Krantis A. Immunopositive GABAergic neural sites display nitric oxide synthase-related NADPH diaphorase activity in the human colon. J Auton Nerv Syst. 1995;50(3):253-262.10.1016/0165-1838(94)00096-3Search in Google Scholar

22. Boeckxstaens GE, Pelckmans PA, Bogers JJ, et al. Release of nitric oxide upon stimulation of nonadrenergic noncholinergic nerves in the rat gastric fundus. J Pharmacol Exp Ther. 1991;256(2):441-447.Search in Google Scholar

23. Calignano A, Whittle BJ, Di Rosa M, Moncada S. Involvement of endogenous nitric oxide in the regulation of rat intestinal motility in vivo. Eur J Pharmacol. 1992;229(2-3):273-276.10.1016/0014-2999(92)90567-NSearch in Google Scholar

24. D’Amato M, Currò D, Montuschi P. Evidence for dual components in the non-adrenergic non-cholinergic relaxation in the rat gastric fundus: role of endogenous nitric oxide and vasoactive intestinal polypeptide. J Auton Nerv Syst. 1992;37(3):175-186.10.1016/0165-1838(92)90039-JSearch in Google Scholar

25. Koh SD, Sanders KM. Stretch-dependent potassium channels in murine colonic smooth muscle cells. J Physiol. 2001;533(1):155-163.10.1111/j.1469-7793.2001.0155b.xSearch in Google Scholar

26. Park KJ, Baker SA, Cho SY, Sanders KM, Koh SD. Sulfur-containing amino acids block stretch-dependent K+ channels and nitrergic responses in the murine colon. Br J Pharmacol. 2005;144(8):1126-1137.10.1038/sj.bjp.0706154Search in Google Scholar

27. Halliwell B. Free radicals and antioxidants: updating a personal view. Nutr Rev. 2012;70(5):257-265.10.1111/j.1753-4887.2012.00476.xSearch in Google Scholar

28. Peyrin-Biroulet L, Rodriguez-Guéant RM, Chamaillard M, et al. Vascular and cellular stress in inflammatory bowel disease: revisiting the role of homocysteine. Am J Gastroenterol. 2007;102(5):1108-1115.10.1111/j.1572-0241.2007.01170.xSearch in Google Scholar

29. McKenzie SJ, Baker MS, Buffinton GD, Doe WF. Evidence of oxidant-induced injury to epithelial cells during inflammatory bowel disease. J Clin Invest. 1996;98(1):136-141.10.1172/JCI118757Search in Google Scholar

30. Middleton SJ, Shorthouse M, Hunter JO. Increased nitric oxide synthesis in ulcerative colitis. Lancet. 1993;341(8843):465-466.10.1016/0140-6736(93)90211-XSearch in Google Scholar

31. Forster J, Damjanov I, Lin Z, Sarosiek I, Wetzel P, McCallum RW. Absence of the interstitial cells of Cajal in patients with gastroparesis and correlation with clinical findings. J Gastrointest Surg. 2005;9(1):102-108.10.1016/j.gassur.2004.10.001Search in Google Scholar

32. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351-358.10.1016/0003-2697(79)90738-3Search in Google Scholar

33. Johnstone C, Day JG, Staines H, Benson EE: The development of a 2,2’-azinobis-(3-ethyl-benzothiazoline-6-sulfonic acid) radical cation decolourisation assay for evaluating total antioxidant status in an alga used to monitor environmental impacts in urban aquatic habitans. Ecol Indic. 2006;6:280-289.10.1016/j.ecolind.2005.03.003Search in Google Scholar

34. Aebi H: Catalase in vitro. Methods Enzymol. 1984;105:121-126.10.1016/S0076-6879(84)05016-3Search in Google Scholar

35. Sun M, Zigman S. An improved spectrophotometric assay for superoxide dismutase based on epinephrine autoxidation. Anal Biochem. 1978;90(1):81-89.10.1016/0003-2697(78)90010-6Search in Google Scholar

36. Günzler WA, Kremers H, Flohé L. An improved coupled test procedure for glutathione peroxidase (EC 1-11-1-9-) in blood. Z Klin Chem Klin Biochem. 1974;12(10):444-448.Search in Google Scholar

37. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265-275.10.1016/S0021-9258(19)52451-6Search in Google Scholar

38. Fang Z, Yao K, Zhang X, et al. Nutrition and health relevant regulation of intestinal sulfur amino acid metabolism. Amino Acids. 2010;39(3):633-640.10.1007/s00726-010-0502-xSearch in Google Scholar

39. Karasu E, Sadan G, Tasatargil A. Effects of hyperhomocysteinemia on non-adrenergic non-cholinergic relaxation in isolated rat duodenum. Dig Dis Sci. 2008;53(8):2106-2112.10.1007/s10620-008-0318-7Search in Google Scholar

40. Stojanović M, Šćepanović LJ, Mitrović D, et al. Rat duodenal motility in vitro: procinetic effects of D,L-Homocysteine thiolactone and modulation of nitric oxide mediated inhibition. Arch Biol Sci. 2013;65(4):1323−1330.10.2298/ABS1304323SSearch in Google Scholar

41. Choe EK, Moon JS, Park KJ. Methionine enhances the contractile activity of human colon circular smooth muscle in vitro. J Korean Med Sci. 2012;27(7):777-783.10.3346/jkms.2012.27.7.777Search in Google Scholar

42. Fu WY, Dudman NP, Perry MA, Wang XL. Homocysteine attenuates hemodynamic responses to nitric oxide in vivo. Atherosclerosis. 2002;161(1):169-176.10.1016/S0021-9150(01)00654-2Search in Google Scholar

43. Zhang LB, Horowitz B, Buxton IL. Muscarinic receptors in canine colonic circular smooth muscle. I. Coexistence of M2 and M3 subtypes. Mol Pharmacol. 1991;40(6):943-951.Search in Google Scholar

44. Thomas EA, Baker SA, Ehlert FJ. Functional role for the M2 muscarinic receptor in smooth muscle of guinea pig ileum. Mol Pharmacol. 1993;44(1):102-110.Search in Google Scholar

45. Glasgow I, Mattar K, Krantis A. Rat gastroduodenal motility in vivo: involvement of NO and ATP in spontaneous motor activity. Am J Physiol. 1998;275(1):889-896.10.1152/ajpgi.1998.275.5.G8899815016Search in Google Scholar

46. Sanders KM, Ward SM. Nitric oxide as a mediator of nonadrenergic noncholinergic neurotransmission. Am J Physiol. 1992;262(3):379-392.Search in Google Scholar

47. Takahashi T. Pathophysiological significance of neuronal nitric oxide synthase in the gastrointestinal tract. J Gastroenterol. 2003;38(5):421-430.10.1007/s00535-003-1094-y12768383Search in Google Scholar

48. Rees DD, Palmer RM, Schulz R, Hodson HF, Moncada S. Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br J Pharmacol. 1990;101(3):746-752.10.1111/j.1476-5381.1990.tb14151.x19177531706208Search in Google Scholar

49. Smith TK, Spencer NJ, Hennig GW, Dickson EJ. Recent advances in enteric neurobiology: mechanosensitive interneurons. Neurogastroenterol Motil. 2007;19(11):869-878.10.1111/j.1365-2982.2007.01019.x17988274Search in Google Scholar

50. Dickson EJ1, Spencer NJ, Hennig GW, et al. An enteric occult reflex underlies accommodation and slow transit in the distal large bowel. Gastroenterology. 2007;132(5):1912-1924.10.1053/j.gastro.2007.02.04717484884Search in Google Scholar

51. Spencer NJ, Smith TK. Mechanosensory S-neurons rather than AH-neurons appear to generate a rhythmic motor pattern in guinea-pig distal colon. J Physiol. 2004;558(2):577-596.10.1113/jphysiol.2004.063586166496315146052Search in Google Scholar

52. Lundgren O, Svanvik J, Jivegård L. Enteric nervous system. I. Physiology and pathophysiology of the intestinal tract. Dig Dis Sci. 1989;34(2):264-283.10.1007/BF015360622644111Search in Google Scholar

53. Hwang SJ, Durnin L, Dwyer L, et al. β-nicotinamide adenine dinucleotide is an enteric inhibitory neurotransmitter in human and nonhuman primate colons. Gastroenterology. 2011;140(2):608-617.10.1053/j.gastro.2010.09.039303173820875415Search in Google Scholar

54. Keef KD, Anderson U, O’Driscoll K, Ward SM, Sanders KM. Electrical activity induced by nitric oxide in canine colonic circular muscle. Am J Physiol Gastrointest Liver Physiol. 2002;282(1):123-129.10.1152/ajpgi.00217.200111751165Search in Google Scholar

55. Won KJ, Sanders KM, Ward SM. Stretch-dependent sensitization of post-junctional neural effectors in colonic muscles. Neurogastroenterol Motil. 2013;25(2):101-113.10.1111/nmo.12059355210623279087Search in Google Scholar

56. Woo CW, Prathapasinghe GA, Siow YL. Hyperhomocysteinemia induces liver injury in rat: Protective effect of folic acid supplementation. Biochim Biophys Acta. 2006;1762(7):656-665.10.1016/j.bbadis.2006.05.01216837172Search in Google Scholar

57. Chanson A, Rock E, Martin JF, Liotard A, Brachet P. Preferential response of glutathionerelated enzymes to folate-dependent changes in the redox state of rat liver. Eur J Nutr. 2007;46(4):204-212.10.1007/s00394-007-0651-117464446Search in Google Scholar

58. Ji C, Kaplowitz N. Hyperhomocysteinemia, endoplasmic reticulum stress, and alcoholic liver injury. World J Gastroenterol. 2004;10(12):1699-1708.10.3748/wjg.v10.i12.1699457225315188490Search in Google Scholar

59. Evelson P, Travacio M, Repetto M, Escobar J, Llesuy S, Lissi EA. Evaluation of total reactive antioxidant potential (TRAP) of tissue homogenates and their cytosols. Arch Biochem Biophys. 2001;388(2):261-266.10.1006/abbi.2001.229211368163Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo