1. bookVolume 66 (2016): Issue 2 (June 2016)
Journal Details
First Published
25 Mar 2014
Publication timeframe
4 times per year
Open Access

Mechanisms of Resistance to Quinolones and Epidemiological Significance of Salmonella spp.

Published Online: 28 Jun 2016
Volume & Issue: Volume 66 (2016) - Issue 2 (June 2016)
Page range: 147 - 159
Received: 08 Feb 2016
Accepted: 06 May 2016
Journal Details
First Published
25 Mar 2014
Publication timeframe
4 times per year

Bacteria develop resistance to antimicrobial agents by a number of different mechanisms. The resistance to (fluoro)quinolones in Salmonella is of particular importance especially if therapy in humans is required. For decades there has been a significant interest in studying the biology of Salmonella because these bacteria are among the leading causes of foodborne illnesses around the globe. To this date, two main mechanisms of quinolone resistance have been established: alteration in the targets for quinolones, decreased accumulation inside bacteria due to impermeability of the membrane and/or an over expression of the efflux pump systems. Both of these mechanisms are chromosomally mediated. Furthermore, mobile elements have been described carrying the qnr gene which confers resistance to quinolones. The plasmid encoded QNR proteins belong to the pentapeptide repeat family of proteins. The plasmid mediated quinolone resistance (PMQR) is often associated with the resistance to beta lactam antibiotics. It was noticed that PMQR is backing up chromosomal mutations for quinolone resistance, hence becoming an important resistance mechanism worldwide. Even with our knowledge expanding over the years, it is not possible to predict how bacteria will respond in the future, if they are exposed to new external challenges. The possibility that they will find a way to survive by introducing new mutations or by exchanging mobile genetic elements and subsequently developing resistance to survive in the environment should not be underestimated.


1. Galanis E., Lo Fo Wong DM, Patrick ME, Binsztein N, Cieslik A, Chalermchikit T, Aidara- Kane A, Ellis A, Angulo FJ, Wegener HC: Web-based Surveillance and global Salmonella distribution, 2000-2002. Emerg Infect Dis 2006, 12:381-388.10.3201/eid1205.050854329144316704773Search in Google Scholar

2. Petty NK, Ben Zakour NL, Stanton-Cook M, Skippington E, Totsika M, Forde BM, Phan MD, Gomes Moriel D, Peters KM, Davies M, Rogers BA, Dougan G, Rodriguez-Baño J, Pascual A, Pitout JDD, Upton M, Paterson DL, Walsh TR, Schembri MA, Beatson SA.: Global dissemination of a multidrug resistant Escherichia coli clone. P Natl Acad Sci USA, 111:5694-5699, 2014.10.1073/pnas.1322678111399262824706808Search in Google Scholar

3. Clinical and Laboratory Standards Institute 2015: Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard-Tenth Edition. CLSI document M07-A10. CLSI Wayne, PA, USA.Search in Google Scholar

4. Clinical and Laboratory Standards Institute, 2015: Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement. Clinical and Laboratory Standards Institute document M100-S25, CLSI, Wayne, PA, USA.Search in Google Scholar

5. European Committee on Antimicrobial Susceptibility Testing, European Society of Clinical Microbiology and Infectious Diseases, 2016, http://www.eucast.org/Search in Google Scholar

6. Hopkins KL., Davies RH, Threlfall EJ.: Mechanisms of quinolone resistance in Escherichia coli and Salmonella: recent developments. Int J Antimicrob Ag 2005, 25: 358-37310.1016/j.ijantimicag.2005.02.00615848289Search in Google Scholar

7. Giraud E, Baucheron S, Cloeckaert A: Resistance to fluoroquinolones in Salmonella: emerging mechanisms and resistance prevention strategies. Microbes and Infect 2006, 8:1937-1944.10.1016/j.micinf.2005.12.02516714137Search in Google Scholar

8. Giraud E, Brisabois A, Martel JL, Chaslus-Dancla E: Comparative studies of mutations in animal isolates and experimental in vitro-and in vivo-selected mutants of Salmonella spp. suggest a counterselection of highly fl uoroquinolone-resistant strains in the field. Antimicrob Agents Ch 1999, 43:2131-2137.10.1128/AAC.43.9.21318943510471553Search in Google Scholar

9. Velhner M. and Stojanović D: Mutational polymorphism in the bacterial topoisomerase genes driven by treatment with quinolones. In: Logie, C. (editor), Point Mutation 2012, 185-210. InTech, Croatia.10.5772/35229Search in Google Scholar

10. Cui S, Li J, Sun Z, Hu C, Jin S, Guo Y, Ran L, Ma Y: Ciprofl oxacin-resistant Salmonella enterica serotype Typhimurium, China. Emerg Infect Dis 2008, 14: 493-495.10.3201/eid1403.070857257080118325271Search in Google Scholar

11. Guerra B, Malorny B, Schroeter A, Helmuth R: Multiple resistance mechanisms in fluoroquinolone-resistant Salmonella isolates from Germany. Antimicrob Agents Ch 2003, 47:2059.10.1128/AAC.47.6.2059.200315586512760900Search in Google Scholar

12. Threlfall J E: Epidemic Salmonella Typhimurium DT 104-a truly international multiresistant clone. J Antimicrob Chemoth 2000 46:7-10.10.1093/jac/46.1.710882682Search in Google Scholar

13. Le Hello S, Hendriksen RS, Doublet B, Fisher I, Nielsen EM, Whichard JM, Bouchrif B, Fashae K, Granier SA, Jourdan-Da Silva N, Cloeckaert A, Threlfall EJ, Angulo FJ, Aarestrup FM, Wain J, Weill FX: International spread of epidemic population of Salmonella enterica serotype Kentucky ST198 resistant to ciprofl oxacin. J Infect Dis 2011, 204:675-684.10.1093/infdis/jir40921813512Search in Google Scholar

14. Le Hello S, Harrois D, Bouchrif B, Sontag L, Elhani D, Guibert V. Zerouali K, Weill XF. Highly drug-resistant Salmonella enterica serotype Kentucky ST198-X1: a microbiology study. Lancet Infect Dis 2013, 13:672-679, published on line 2013a: http://dx.doi.org/10.1016/S1473-3099(13)70141-510.1016/S1473-3099(13)70141-5Search in Google Scholar

15. Nógrády N, Tóth A, Kostyák A, Pászti J, Nagy B: Emergence of multidrug-resistant clones of Salmonella Infantis in broiler chickens and humans in Hungary. J Antimicrob Chemoth 2007, 60:645-648.10.1093/jac/dkm24917617553Search in Google Scholar

16. Rašeta M., Teodorović V., Bunčić O., Katić V., Branković-Lazić I., Polaček V., Vidanović D.: Antibiotic resistance and molecular studies on Salmonella enterica subspecies enterica serovar Infantis isolated in human cases and broiler carcasses. Acta Vet Beograd 2014, 64:257-267.10.2478/acve-2014-0024Search in Google Scholar

17. Velhner M, Kozoderović G, Grego E, Galić N, Stojanov I, Jelesić Z, and Kehrenberg C: Clonal spread of Salmonella enterica serovar Infantis in Serbia: acquisition of mutations in the topoisomerase genes gyrA and parC leads to increased resistance to fluoroquinolones. Zoonoses and Public Hlth 2014, 61:364-37010.1111/zph.1208124119387Search in Google Scholar

18. Shahada F, Chuma T, Tobata T, Okamoto K, Sueyoshi M, Takase K: Molecular epidemiology of antimicrobial resistance among Salmonella enterica serovar Infanits from poultry in Kagoshima, Japan. Int J Antimicrob Ag 2006, 28:302-307. 10.1016/j.ijantimicag.2006.07.00316949258Search in Google Scholar

19. Gal-Mor O, Valinsky L, Weinberger M, Guy S, Jaffe J, Schorr YI, Raisfeld A, Agmon V, Nissan I: Multidrug-resistant Salmonella enterica serovar Infantis, Israel. Emerg Infect Dis 2010, 16:1754-1757.10.3201/eid1611.100100329450521029536Search in Google Scholar

20. Hauser E, Tietze E, Helmuth R, Junker E, Prager R, Schroeter A, Rabsch W, Fruth A, Toboldt A, Malrony B: Clonal dissemination of Salmonella enterica serovar Infantis in Germany. Foodborne Pathog Dis 2012, 9:352-360.10.1089/fpd.2011.103822401270Search in Google Scholar

21. Aviv G, Tsyba K, Steck N, Salmon-Divon M, Cornelius A, Rahav G, Grassl GA, Gal-Mor O: A unique megaplasmid contributes to stress tolerance and pathogenicity of an emergent Salmonella enterica serovar Infantis strain. Environ Microbiol 2014, 16:977-994.10.1111/1462-2920.1235124320043Search in Google Scholar

22. Chiu CH, Wu TL, Su LH, Liu JW, Chu C: Fluoroquinolone resistance in Salmonella enterica serotype Choleresuis, Taiwan, 2000-2003. Emerg Infect Dis 2004, 10:1674-1676.10.3201/eid1009.030596332029115498176Search in Google Scholar

23. Bucheron S, Imberechts H, Chaslus-Dancla E, Cloeckaert A: The AcrB multidrug transporter plays a major role in high level fl uoroquinolone resistance in Salmonella enterica srovar Typhimurium phage type DT204. Microb Drug Resist 2002, 8: 281-289.10.1089/1076629026046954312523625Search in Google Scholar

24. Olliver A, Vallé M, Chaslus-Dancla E, Cloeckaert A.: Role of an acrR mutation in multidrug resistance of in vitro-selected fl uoroquinolone-resistant mutants of Salmonella enterica serovar Typhimurium. FEMS Microbiol Lett 2004, 238:267-272.10.1111/j.1574-6968.2004.tb09766.xSearch in Google Scholar

25. Olliver A, Vallé M, Chaslus-Dancla E, Cloeckaert A: Overexpression of multidrug efflux operon acrEF by insertonal activation with IS1 or IS10 elements in Salmonella enetrica serovar Typhimurium DT204 acrB mutants selected with fluoroquinolones. Antimicrob Agents Ch 2005, 49:289-301.10.1128/AAC.49.1.289-301.2005Search in Google Scholar

26. Blair JM, Smith HE, Ricci V, Lawler AJ, Thompson LJ, Piddock LJV: Expression of homologous RND effl ux pump genes is dependent upon AcrB expression: implications for efflux and virulence inhibitor design. J Antimicrob Chemoth 2015, 70:424-431.10.1093/jac/dku380Search in Google Scholar

27. Abouzeed YM, Baucheron S, Cloeckaert A: ramR mutations involved in efflux-mediated multidrug resistance in Salmonella enterica serovar Typhimurium. Antimicrob Agents Ch 2008, 52:2428-2434.10.1128/AAC.00084-08Search in Google Scholar

28. Zheng J, Cui S, Meng J: Effect of transcriptional activators RamA and SoxS on expression of multidrug efflux pumps AcrAB and AcrEF in fl uoroquinolone-resistant Salmonella Typhimurium. J Antimicrob Chemoth 2009, 63:95-102.10.1093/jac/dkn448Search in Google Scholar

29. Kehrenberg C, Cloeckaert A, Klein G, Schwarz S: Decreased fluoroquinolone susceptibility in mutants of Salmonella serovars other than Typhimurium: detection of novel mutations involved in modulated expression of ramA and SoxS. J Antimicrob Chemoth 2009, 64:1175-1180.10.1093/jac/dkp347Search in Google Scholar

30. Martínez-Martínez L, Pascual A, Jacoby GA: Quinolone resistance from a transferable plasmid. Lancet 1998, 351:797-799.10.1016/S0140-6736(97)07322-4Search in Google Scholar

31. Hata M, Suzuki M, Matsumoto M, Takahashi M, Sato K, Ibe S, Sakae K: Cloning of a novel gene for quinolone resistance from a transfarable plasmid in Shigella flexneri 2b. Antimicrob Agents Ch 2005, 49:801-803.10.1128/AAC.49.2.801-803.200554736115673773Search in Google Scholar

32. Jacoby GA, Walsh KE, Mills DM, Walker VJ, Oh H, Robicsek A, Hooper DC: qnrB, another plasmid-mediated gene for quinolone resistance. Antimicrob Agents Ch 2006, 50:1178-1182.10.1128/AAC.50.4.1178-1182.2006142691516569827Search in Google Scholar

33. Wang M, Guo Q, Xu X, Wang X, Ye X, Wu S, Hooper DC, Wang M: New plasmidmediated quinolone resistance gene, qnrC, found in a clinical isolate of Proteus mirabilis. Antimicrob Agents Ch 2009, 53:1892-1897. 10.1128/AAC.01400-08268156219258263Search in Google Scholar

34. Cavaco LM, Hasman H, Xia S, Aarestrup FM: qnrD, a novel gene conferring transferable quinolone resistance in Salmonella enterica serovar Kentucky and Bovismorbifi cans strains of human origin. Antimicrob Agents Ch 2009, 53:603-608.10.1128/AAC.00997-08263062819029321Search in Google Scholar

35. Strahilevitz J, Jacoby GA, Hooper DC, Robicsek A: Plasmid-mediated quinolone resistance: a multifaceted threat. Clin Microbiol Rev 2009, 22:664-689.10.1128/CMR.00016-09277236419822894Search in Google Scholar

36. Velhner M, Kozoderović G, Jelesić Z, Stojanov I, Dubravka P, Jelena Petrović: Plasmid mediated resistance to quinolones in Salmonella. Arhiv Vet Med 2012, 5: 19-29.10.46784/e-avm.v5i1.158Search in Google Scholar

37. Wang M, Tran JH, Jacoby GA, Zhang Y, Wang F, Hooper DC: Plasmid mediated quinolone resistance in clinical isolates of Escherichia coli from Shanghai, China. Antimicrob Agents Ch 2003, 47:2242-2248.10.1128/AAC.47.7.2242-2248.200316183412821475Search in Google Scholar

38. Robicsek A, Strahilevitz J., Jacoby GA, Macielag M, Abbanat D, Park CH, Bush K, Hooper DC: Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat Med 2006, 12:83-88.10.1038/nm134716369542Search in Google Scholar

39. Park CH, Robicsek A, Jacoby GA, Sahm D, Hooper DC: Prevalence in the United States of aac(6’)-Ib-cr encoding a ciprofloxacin-modifying enzyme: Antimicorb Agents Ch 2006, 50:3953-3955.10.1128/AAC.00915-06163523516954321Search in Google Scholar

40. Yamane K, Wachino J, Suzuki S, Arakawa Y: Plasmid-mediated qepA gene among Escherichia coli clinical isolates from Japan. Antimicrob Agents Ch 2008, 52:1564-1566.10.1128/AAC.01137-07229254318285488Search in Google Scholar

41. Hansen LH, Sørensen SJ, Jørgensen HS, Jensen LB: The prevalence of the OqxAB multidrug efflux pump amongst olaquindox-resistant Escherichia coli in pigs. Microb Drug Resist 2005, 11:378-382.10.1089/mdr.2005.11.37816359198Search in Google Scholar

42. Wong MH, Chan EW, Liu LZ, Chen S: PMQR genes oqxAB and acc(6’)Ib-cr accelerate the development of fluoroquinolone resistance in Salmonella typhimurium. Front Microbiol 2014, 5, article 521.10.3389/fmicb.2014.00521418318425324840Search in Google Scholar

43. Kehrenberg C, Friederichs S, de Jong A, Michael GB, Schwarz S: Identification of the plasmid-borne quinolone resistance gene qnrS in Salmonella enterica serovar Infantis. J of Antimicrob Chemoth 2006, 58:18-22.10.1093/jac/dkl21316720566Search in Google Scholar

44. Arnaut M, Velhner M, Suvajdžić Lj, Milanov D, Petrović J, Kozoderović G: The role of effl ux pump and other mechanisms of antimicrobial resistance to (fl uoro)quinolones in epidemic isolates of Salmonella Typhimurum, Salmonella Kentucky and Salmonella Infantis. Archives Vet Med 2014, 7:71-80.10.46784/e-avm.v7i1.126Search in Google Scholar

45. Velhner M, Todorović D, Pajić M, Stojanov I: Antimicrobial resistance of Salmonella spp. isolated from poultry farms in southern Bačka and Srem region, XVI International Symposium “Feed Technology”, Institute of Food Technology, University of Novi Sad, Novi Sad, 28-30, 10, 2014, p 172-175.Search in Google Scholar

46. Todorović D, Velhner M, Milanov D, Vidanović D, Suvajdžić Lj, Stojanov I, Krnjaić D: Characterization of tetracycline resistance of Salmonella enterica subspecies enterica serovar Infantis isolated from poultry in the northern part of Serbia. Acta Vet Beograd 2015, 65:548-556.10.1515/acve-2015-0046Search in Google Scholar

47. Velhner M, Kozoderović G, Jelesić Z: Antibiotic resistance to fluoroqionoles in Salmonella spp.: Recent findings in Serbia and brief overview of resistance mechanisms and molecular typing methods, Proceedings “One Health-New Challenges” First International Symposium of Veterinary Medicine, Hotel “Premier Aqua”, Vrdnik, May 21-23, 2015, 468-472. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo