1. bookVolume 9 (2016): Issue 2 (October 2016)
Journal Details
License
Format
Journal
eISSN
1339-3065
First Published
10 Dec 2012
Publication timeframe
2 times per year
Languages
English
access type Open Access

Disruption of GABA shunt affects Trichoderma atroviride response to nutritional and environmental stimuli

Published Online: 08 Dec 2016
Volume & Issue: Volume 9 (2016) - Issue 2 (October 2016)
Page range: 109 - 113
Journal Details
License
Format
Journal
eISSN
1339-3065
First Published
10 Dec 2012
Publication timeframe
2 times per year
Languages
English
Abstract

The fungus Trichoderma atroviride is a member of the genus Trichoderma to which belong many species known for high cellulase production, formation of various antibiotics, plant biocontrol and antagonistic activities against other fungi. Deletion of T. atroviride glutamate decarboxylase gene gad caused minor defects in germination, hyphal branching, slower growth and disruption of conidiation pattern. GABA can be used by fungi as a secondary carbon source and as a primary nitrogen source. We analyzed the effect of different nutrient compositions and environmental conditions (light and temperature) on growth and development of T. atroviride in strains defective in the functional GAD. The gad mutants grown on NH4NO3 as a sole carbon source grew slower and formed conidiation bands closer to each other which was clearly demonstrated during their cultivation in race tubes. The gad mutants exhibited slightly lower apical extension growth rate at the room temperature but their apical extension rate dropped significantly at 30 °C. Higher temperature had also inhibitory effect on gad mutant conidiation, whereas 30 °C seems optimal temperature for the parental strain. The optimal temperature for gad mutant conidiation was lower than in F534, about 25 °C.

Keywords

Bönnighausen J, Gebhard D, Kröger C, Hadeler B, Tumforde T, Lieberei R, Bergemann J, Schäfer W, Bormann J (2015) Mol. Microbiol. 98(6): 1115—32.Search in Google Scholar

Cao J, Barbosa JM, Singh NK, Locy RD (2013) Yeast 30(4): 129—44.10.1002/yea.2948Search in Google Scholar

Carapito R, Hatsch D, Vorwerk S, Petkovski E, Jeltsch J-M, Phalip V (2008) Fungal Genet. Biol. 45: 738—748.Search in Google Scholar

Chovanec P, Hudecová D, Varečka L (2001) Folia Microbiol 46(5): 417—22.10.1007/BF02814432Search in Google Scholar

Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella LR, Horwitz BA, Kenerley CM, Monte E, Mukherje PK, Zeilinger S, Grigoriev I., Kubicek CP (2011) Nature 9: 749—759.10.1038/nrmicro2637Search in Google Scholar

Ellison PJ, Harrower KM, Chilvers GA, Owens JD (1981) Trans. Br. Mycol. Soc. 76: 441—445.Search in Google Scholar

Friedl, MA, Kubicek CP, Druzhinina IS (2008) Appl. Environ. Microbiol. 74: 245—250.Search in Google Scholar

Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004a) Nat. Rev. Microbiol. 2: 43—56.10.1038/nrmicro797Search in Google Scholar

Harman GE, Lorito M, Lynch JM (2004b) Adv. Appl. Microbiol. 56: 313—330.10.1016/S0065-2164(04)56010-0Search in Google Scholar

Hao R, Schmit JC (1993) Biochem. J. 293(3): 735—738.Search in Google Scholar

Hao R, Schmit JC (1991) J. Biol. Chem. 266: 5135—5139.Search in Google Scholar

Kamei Y, Tamura T, Yoshida R, Ohta S, Fukusaki E, Mukai Y (2011) Biochem Biophys Res Commun. 407(1): 185—90.Search in Google Scholar

Kato Yuki, Kato Yoko, Furukawa K, Hara S (2002) Biosci. Biotechnol. Biochem. 66: 2600—2605.Search in Google Scholar

Kumar S, Punekar NS (1997) Mycol. Res. 101(4): 403—409.Search in Google Scholar

Masuo S, Terabayashi Y, Shimizu M, Fujii T, Kitazume T, Takaya N (2010) Mol Genet Genomics 284: 415—424.10.1007/s00438-010-0576-x20878186Search in Google Scholar

Marzluf GA (1997) Microbiol. Mol. Biol. Rev. 61: 17—32.Search in Google Scholar

Nižňanský L, Kryštofová S, Vargovič P, Kaliňák M, Simkovič M, Varečka L (2013) Antonie Van Leeuwenhoek 104(5): 793—807.10.1007/s10482-013-9989-y23912446Search in Google Scholar

Pokorný R, Vargovič P, Hölker U, Janssen M, Bend J, Hudecová D, Varečka Ľ (2005) J. Basic Microbiol. 45: 219—229.10.1002/jobm.20041035415900543Search in Google Scholar

Ray A, Macwana S, Ayoubi P, Hall LT, Prade R, Mort AJ (2004) BMC genomics 5: 22.10.1186/1471-2164-5-2240073115050035Search in Google Scholar

Steyaert JM, Weld RJ, Mendoza-Mendoza A, Stewart A (2010a) Microbiology (Reading, England) 156: 2887—900.10.1099/mic.0.041715-020688823Search in Google Scholar

Steyaert JM, Weld RJ, Stewart A (2010b) Fungal Biol. 114: 179—188.10.1016/j.funbio.2009.12.00220943128Search in Google Scholar

Strigáčová J, Chovanec P, Liptaj T, Hudecová D, Turský T, Šimkovič M, Varečka Ľ (2001) Arch. Microbiol. 175: 32—40.Search in Google Scholar

ter Schure EG, van Riel NAW, Verrips CT (2000) FEMS Microbiol. Rev. 24: 67—83.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo