1. bookVolume 9 (2016): Issue 1 (April 2016)
Journal Details
License
Format
Journal
eISSN
1339-3065
First Published
10 Dec 2012
Publication timeframe
2 times per year
Languages
English
Open Access

Carbon source utilization and hydrogen production by isolated anaerobic bacteria

Published Online: 08 Jun 2016
Volume & Issue: Volume 9 (2016) - Issue 1 (April 2016)
Page range: 62 - 67
Journal Details
License
Format
Journal
eISSN
1339-3065
First Published
10 Dec 2012
Publication timeframe
2 times per year
Languages
English
Abstract

Five bacterial isolates were tested for their ability to generate hydrogen during anaerobic fermentation with various carbon sources. One isolate from sheep rumen was identified as Escherichia coli and four isolates belonged to Clostridium spp. Glucose, arabinose, ribose, xylose, lactose and cellobiose were used as carbon sources. Results showed that all bacterial strains could utilize these compounds, although the utilization of pentoses diminished growth yield. The excretion of monocarboxylic acids (acetate, propionate, formiate, butyrate) into medium was changed after replacing glucose by other carbon sources. Di- and tricarboxylic acids were excreted in negligible amounts only. Spectra of excreted carboxylic acids were unique for each strain and all carbon sources. All isolates produced H2 between 4—9 mmol·L−1 during the stationary phase of growth with glucose as energy source. This value was dramatically reduced when pentoses were used as carbon source. Lactose and cellobiose, starch and cellulose were suitable substrates for the H2 production in some but not all isolates. No H2 was produced by proteinaceous substrate, such as blood. Results show that both substrate utilization and physiological responses (growth, excretion of carboxylates, H2 production) are unique functions of each isolate.

Keywords

Beckers L, Hiligsmann S, Hamilton C, Masset J, Thonart P (2010) Base 14, ISSN 1370-6233 numéro spécial 2.Search in Google Scholar

Boboescu IZ, Ilie M, Gherman VD, Mirel I, Pap B, Negrea A, Kondorosi E, Bíró T, Maróti G (2014) Biotechnol Biofuels 7: 139. doi: 10.1186/s13068-014-0139-1. eCollection 2014.10.1186/s13068-014-0139-1417742225278996Search in Google Scholar

Chandrasekhar K, Lee Y-J, Lee D-W (2015) Int. J. Mol. Sci. 16: 8266—8293. doi:10.3390/ijms16048266.10.3390/ijms16048266442508025874756Search in Google Scholar

Chen P, Wang Y, Yan L, Wang Y, Li S, Yan X, Wang N, Liang N, Li H (2015) Biol. Res. 6: 48. doi: 10.1186/s40659-015-0015-x.10.1186/s40659-015-0015-x442797525943991Search in Google Scholar

Collet C, Girbal L, Péringer P, Schwitzguébel J-P, Soucaille P (2006) Arch. Microbiol. 185: 331—339.Search in Google Scholar

Demain AL, Newcomb M, Wu JHD (2005) Microbiol. Mol. Biol. Rev. 69: 124—154. doi:10.1128/MMBR.69.1.124–154.2005.10.1128/MMBR.69.1.124-154.2005108279015755956Search in Google Scholar

Hallenbeck PC, Benemann JR (2002) Int. J. Hydrogen Energy 27: 1185—1193.Search in Google Scholar

Hiligsmann S, Masset J, Hamilton C, Beckers L, Thonart P (2011) Bioresource Technol. 102: 3810—3818. doi: 10.1016/j.biortech.2010.11.094.10.1016/j.biortech.2010.11.09421185171Search in Google Scholar

Hung C-H, Yi-T C, Yu-J C (2011) Bioresource Technol. 102: 8437—8444.Search in Google Scholar

Jame R, Vilímová V, Lakatoš B, Varečka Ľ (2011) Hydrogen production by anaerobic bacteria grown on glucose and glycerol. Acta Chimica Slovaca 4: 145—157.Search in Google Scholar

Janoir C, Grénery J, Savariau-Lacomme MP, Collignon A (2004) Pathol Biol (Paris) 52: 444—449.10.1016/j.patbio.2004.07.02515465262Search in Google Scholar

Kalil MS, Alshiyab HSS, Yusoff WMW (2009) Am. J. Appl. Sci. 6: 1158—1168.Search in Google Scholar

Masset J, Calusinska M, Hamilton C, Hiligsmann S, Joris B, Wilmotte A, Thonart P (2012) Biotechnol. Biofuels 5: 35. DOI: 10.1186/1754-6834-5-35.10.1186/1754-6834-5-35347415122616621Search in Google Scholar

Nath K, Das D (2004) Appl Microbiol Biotechnol 65: 520—529.10.1007/s00253-004-1644-015378294Search in Google Scholar

Ntaikou I, Antonopoulou G, Lyberatos G (2010) Waste Biomass Valor. 1: 21—39. DOI 10.1007/s12649-009-9001-2.Search in Google Scholar

Patel SK, Kalia VC (2013) Indian J. Microbiol. 53: 3—10. doi: 10.1007/s12088-012-0287-6.10.1007/s12088-012-0287-6358751524426072Search in Google Scholar

Rajhi H, Díaz EE, Rojas P, Sanz JL (2013) Curr. Microbiol. 67: 30—355. doi: 10.1007/s00284-013-0328-3.10.1007/s00284-013-0328-323397222Search in Google Scholar

Rittmann S, Herwig C (2012) Microbial Cell Factories 11, 115—134.10.1186/1475-2859-11-115344301522925149Search in Google Scholar

Romão BB, Batista FRX, Ferreira JS, Costa HCB, Resende MM, Cardoso VL (2014) Appl. Biochem. Biotechnol. 172: 3670—3685.Search in Google Scholar

Seiboth B, Metz B (2011) Appl. Microbiol. Biotechnol. 89: 1665—1673. doi: 10.1007/s00253-010-3071-8.10.1007/s00253-010-3071-8304423621212945Search in Google Scholar

Shih NJ, Labbé RG (1995) Appl. Environ. Microbiol. 61: 1776—1779.Search in Google Scholar

Sivagurunathan P, Sen B, Lin CY (2014) J. Biosci. Bioeng. 117: 222—228. doi: 10.1016/j.jbiosc.2013.07.015.10.1016/j.jbiosc.2013.07.01524095211Search in Google Scholar

Thomas L, Joseph A, Gottumukkala LD (2014) Bioresource Technol. 158: 343—350. doi: 10.1016/j.biortech.2014.01.140.10.1016/j.biortech.2014.01.14024581864Search in Google Scholar

Xing D, Ren N, Rittmann BE (2008) Appl. Environ. Microbiol. 74, 1232—1239.Search in Google Scholar

Yin Y, Wang J (2016) Bioresour. Technol. 200: 217—222. doi: 0.1016/j.biortech.2015.10.027.Search in Google Scholar

Zelená V, Birošová L, Olejníková P, Polák M, Lakatoš B, Varečka Ľ (2016) Gen. Physiol. Biophys. 35: 95—107. doi: 10.4149/gpb_2015036.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo