1. bookVolume 66 (2016): Issue 4 (December 2016)
Journal Details
First Published
28 Feb 2007
Publication timeframe
4 times per year
Open Access

Pleiotropic effects of niacin: Current possibilities for its clinical use

Published Online: 15 Oct 2016
Volume & Issue: Volume 66 (2016) - Issue 4 (December 2016)
Page range: 449 - 469
Accepted: 02 Jun 2016
Journal Details
First Published
28 Feb 2007
Publication timeframe
4 times per year

1. [No authors listed] Clofibrate and niacin in coronary heart disease, JAMA 231 (1975) 360-381; DOI: 10.1001/jama.1975.03240160024021.10.1001/jama.1975.03240160024021Search in Google Scholar

2. P. L. Canner, K. G. Berge, N. K. Wenger, J. Stamler, L. Friedman, R. J. Prineas and W. Friedewald, Fifteen year mortality in Coronary Drug Project patients: long-term benefit with niacin, J. Am. Coll. Cardiol. 8 (1986) 1245-1255; DOI: 10.1016/S0735-1097(86)80293-5.10.1016/S0735-1097(86)80293-5Search in Google Scholar

3. W. Hochholzer, D. D. Berg and R. P. Giugliano, The facts behind niacin, Ther. Adv. Cardiovasc. Dis. 5 (2011) 227-240; DOI: 10.1177/1753944711419197.10.1177/175394471141919721893559Search in Google Scholar

4. L. A. Carlson, A. Hamsten and A. Asplund, Pronounced lowering of serum levels of lipoprotein Lp(a) in hyperlipidaemic subjects treated with nicotinic acid, J. Intern. Med. 226 (1989) 271-276; DOI: 10.1111/j.1365-2796.1989.tb01393.x.10.1111/j.1365-2796.1989.tb01393.x2530298Search in Google Scholar

5. R. S. Birjmohun, B. A. Hutten, J. J. Kastelein and E. S. Stroes, Efficacy and safety of high-density lipoprotein cholesterol-increasing compounds: a meta-analysis of randomized controlled trials, J. Am. Coll. Cardiol. 45 (2005) 185-197; DOI: 10.1016/j.jacc.2004. in Google Scholar

6. L. A. Carlson, Nicotinic acid and other therapies for raising high-density lipoprotein, Curr. Opin.Cardiol. 21 (2006) 336-344; DOI: 10.1097/01.hco.0000231404.76930.e9.10.1097/01.hco.0000231404.76930.e916755203Search in Google Scholar

7. V. S. Kamanna and M. L. Kashyap, Mechanism of action of niacin, Am. J. Cardiol. 101 (2008) 20B-26B; DOI: 10.1016/j.amjcard.2008. in Google Scholar

8. L. H. Zhang, V. S. Kamanna, S. H. Ganji, X. M. Xiong and M. L. Kashyap, Niacin increases HDL biogenesis by enhancing DR4-dependent transcription of ABCA1 and lipidation of apolipoprotein A-I in HepG2 cells, J. Lipid Res. 53 (2012) 941-950; DOI: 10.1194/jlr.M020917.10.1194/jlr.M020917332939322389325Search in Google Scholar

9. T. Sakai, V. S. Kamanna and M. L. Kashyap, Niacin, but not gemfibrozil, selectively increases LPAI, a cardioprotective subfraction of HDL, in patients with low HDL cholesterol, Arterioscler. Thromb. Vasc. Biol. 21 (2001) 1783-1789; DOI: 10.1161/hq1001.096624.10.1161/hq1001.09662411701466Search in Google Scholar

10. A. Otocka-Kmiecik, D. P. Mikhailidis, S. J. Nicholls, M. Davidson, J. Rysz and M. Banach, Dysfunctional HDL: a novel important diagnostic and therapeutic target in cardiovascular disease, Prog.Lipid Res. 51 (2012) 314-324; DOI: 10.1016/j.plipres.2012. in Google Scholar

11. C. Mineo and P. W. Shaul, Novel biological functions of high-density lipoprotein cholesterol, Circ. Res. 111 (2012) 1079-1090; DOI: 10.1161/CIRCRESAHA.111.258673.10.1161/CIRCRESAHA.111.258673350060623023510Search in Google Scholar

12. L. A. Carlson and G. Rosenhamer, Reduction of mortality in the Stockholm Ischaemic Heart Disease Secondary Prevention Study by combined treatment with clofibrate and nicotinic acid, Acta Med. Scand. 223 (1988) 405-418; DOI: 10.1111/j.0954-6820.1988.tb15891.x.10.1111/j.0954-6820.1988.tb15891.x3287837Search in Google Scholar

13. D. H. Blankenhorn, S. A. Nessim, R. L. Johnson, M. E. Sanmarco, S. P. Azen and L. Cashin-Hemphill, Beneficial effects of combined colestipol-niacin therapy on coronary atherosclerosis and coronary venous bypass grafts, JAMA 257 (1987) 3233-3240; DOI: 10.1001/jama.1987.03390230069027.10.1001/jama.1987.03390230069027Search in Google Scholar

14. G. Brown, J. J. Albers, L. D. Fisher, S. M. Schaefer, J. T. Lin, C. Kaplan, X. Q. Zhao, B. D. Bisson, V. F. Fitzpatrick and H. T. Dodge, Regression of coronary artery disease as a result of intensive lipidlowering therapy in men with high levels of apolipoprotein B, N. Engl. J. Med. 323 (1990) 1289-1298; DOI: 10.1056/NEJM199011083231901.10.1056/NEJM1990110832319012215615Search in Google Scholar

15. W. E. Boden, J. L. Probstfield, T. Anderson, B. R. Chaitman, P. Desvignes-Nickens, K. Koprowicz, R. McBride, K. Teo, W. Weintraub and collaborators (316), Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy, N. Engl. J. Med. 365 (2011) 2255-2267; DOI: 10.1056/ NEJMoa1107579.10.1056/NEJMoa110757922085343Search in Google Scholar

16. HPS2-THRIVE collaborative group (1472), M. J. Landray, R. Haynes, J. C. Hopewell, S. Parish, T. Aung, J. Tomson, K. Wallendszus, M. Craig, L. Jiang, R. Collins and J. Armitage, Effects of extended- release niacin with laropiprant in high-risk patients, N. Engl. J. Med. 371 (2014) 203-212; DOI: 10.1056/NEJMoa1300955.10.1056/NEJMoa130095525014686Search in Google Scholar

17. J. R. Guyton, M. E. McGovern and L. A. Carlson, Niacin (Nicotinic Acid), in Clinical Lipidology. A Companion to Braunwald´s Heart Disease (Ed. C. M. Ballantyne), 2nd ed., Elsevier, Sainders, Philadelphia 2015, pp. 274-284.Search in Google Scholar

18. S. J. Nicholls, Is niacin ineffective? Or did AIM-HIGH miss its target?, Clev. Clin. J. Med. 79 (2012) 38-43; DOI: 10.3949/ccjm.79a.11166.10.3949/ccjm.79a.1116622219232Search in Google Scholar

19. Z. Blomgarden and Y. Handelsman, Did AIM-HIGH aim too low?, J. Diabetes 4 (2012) 1-2; DOI: 10.1111/j.1753-0407.2011.00176.x.10.1111/j.1753-0407.2011.00176.x22141573Search in Google Scholar

20. J. R. Guyton, A. E. Slee, T. Anderson, J. L. Fleg, R. B. Goldberg, M. L. Kashyap, S. M. Marcovina, S. D. Nash, K. D. O‘Brien, W. S. Weintraub, P. Xu, X. Q. Zhao and W. E. Boden, Relationship of lipoproteins to cardiovascular events: the AIM-HIGH Trial (Atherothrombosis intervention in metabolic syndrome with low HDL/high triglycerides and impact on global health outcomes), J. Am. Coll. Cardiol. 62 (2013) 1580-1584; DOI: 10.1016/j.jacc.2013. in Google Scholar

21. I. Gaidarov, X. Chen, T. Anthony, D. Maciejewski-Lenoir, C. Liaw and D. J. Unett, Differential tissue and ligand-dependent signaling of GPR109A receptor: Implications for anti-atherosclerotic therapeutic potential, Cell. Signal. 25 (2013) 2003-2016; DOI: 10.1016/j.cellsig.2013. in Google Scholar

22. Y. L. Yang, M. Hu, M. Chang and B. Tomlinson, A high incidence of exanthematous eruption associated with niacin/laropiprant combination in Hong Kong Chinese patients, J. Clin. Pharm. Ther. 38 (2013) 528-532; DOI: 10.1111/jcpt.12096.10.1111/jcpt.1209624020480Search in Google Scholar

23. M. Zeman, M. Vecka, F. Perlík, R. Hromádka, B. Stanková, E. Tvrzická and A. Žák, Niacin in the treatment of hyperlipidemias in light of new clinical trials: Has niacin lost its place?, Med. Sci. Monit. 21 (2015) 2156-2162; DOI: 10.12659/MSM.893619.10.12659/MSM.893619452300626210594Search in Google Scholar

24. J. T. Chai, J. E. Digby and R. P. Choudhury, GPR109A and vascular inflammation, Curr. Atheroscler. Rep. 15 (2013) 325 (10 pages); DOI: 10.1007/s11883-013-0325-9.10.1007/s11883-013-0325-9363111723526298Search in Google Scholar

25. M. Lukasova, J. Hanson, S. Tunaru and S. Offermanns, Nicotinic acid (niacin): new lipid-independent mechanisms of action and therapeutic potential, Trends Pharmacol. Sci. 32 (2011) 700-707; DOI: 10.1016/j.tips.2011. in Google Scholar

26. L-H. Zhang, V. S. Kamanna, M. C. Zhang and M. L. Kashyap, Niacin inhibits surface expression of ATP synthase b chain in HepG2 cells: implications for raising HDL, J. Lipid Res. 49 (2008) 1195-1201; DOI: 10.1194/jlr.M700426-JLR200.10.1194/jlr.M700426-JLR20018316796Search in Google Scholar

27. S. H. Ganji, S. Tavintharan, D. Zhu, Y. Xing, V. S. Kamanna and M. L. Kashyap, Niacin noncompetitively inhibits DGAT2 but not DGAT1 activity in HepG2 cells, J. Lipid Res. 45 (2004) 1835-1845; DOI: 10.1194/jlr.M300403-JLR200.10.1194/jlr.M300403-JLR20015258194Search in Google Scholar

28. B. J. Wu, L. Yan, F. Charlton, P. Witting, P. J. Barter and K. A. Rye, Evidence that niacin inhibits acute vascular inflammation and improves endothelial dysfunction independent of changes in plasma lipids, Arterioscler. Thromb. Vasc. Biol. 30 (2010) 968-975; DOI: 10.1161/ATVBAHA.109.201129.10.1161/ATVBAHA.109.20112920167660Search in Google Scholar

29. J. E. Digby, E. McNeill, O. J. Dyar, V. Lam, D. R. Greaves and R. P. Choudhury, Anti-inflammatory effects of nicotinic acid in adipocytes demonstrated by suppression of fractalkine, rantes, and mcp-1 and upregulation of adiponectin, Atherosclerosis 209 (2010) 89-95; DOI: 10.1016/j.atherosclerosis.2009. in Google Scholar

30. J. E. Digby, F. Martinez, A. Jefferson, N. Ruparelia, J. Chai, M. Wamil, D. R. Graves and R. P. Choudhury, Anti-inflammatory effects of nicotinic acid in human monocytes are mediated by GPR109A dependent mechanisms, Arterioscl. Thromb. Vas. Biol. 32 (2012) 669-676; DOI: 10.1161/ ATVBAHA.111.241836.10.1161/ATVBAHA.111.241836339259822267479Search in Google Scholar

31. D. H. Endemann and E. L. Schiffrin, Endothelial dysfunction, J. Am. Soc. Nephrol. 15 (2004) 1983-1992; DOI: 10.1097/01.ASN.0000132474.50966.DA.10.1097/01.ASN.0000132474.50966.DA15284284Search in Google Scholar

32. H. N. Siti, Y. Kamisah and J. Kamsiah, The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review), Vascul. Pharmacol. 71 (2015) 40-56; DOI: 10.1016/j. vph.2015.03.005. Search in Google Scholar

33. B. Chen, Y. Lu, Y. Chen and J. Cheng, The role of Nrf2 in oxidative stress-induced endothelial injuries, J. Endocrinol. 225 (2015) R83-R99; DOI: 10.1530/JOE-14-0662.10.1530/JOE-14-066225918130Search in Google Scholar

34. S. H. Ganji, S. Qin, L. Zhang, V. S. Kamanna and M. L. Kashyap, Niacin inhibits vascular oxidative stress, redox-sensitive genes, and monocyte adhesion to human aortic endothelial cells, Atherosclerosis 202 (2009) 68-75; DOI: 10.1016/j.atherosclerosis.2008. in Google Scholar

35. S. Tavintharan, S. C. Lim and C. F. Sum, Effects of niacin on cell adhesion and early atherogenesis: biochemical and functional findings in endothelial cells, Basic Clin. Pharmacol. Toxicol. 104 (2009) 206-210; DOI: 10.1111/j.1742-7843.2008.00364.x.10.1111/j.1742-7843.2008.00364.x19159436Search in Google Scholar

36. E. P. Plaisance, M. Lukasova, S. Offermanns, Y. Zhang, G. Cao and R. L. Judd, Niacin stimulates adiponectin secretion through the GPR109A receptor, Am. J. Physiol. Endocrinol. Metab. 296 (2009) E549-E558; DOI: 10.1152/ajpendo.91004.2008.10.1152/ajpendo.91004.200819141678Search in Google Scholar

37. M. Iantorno, U. Campia, N. Di Daniele, S. Nistico, G. B. Forleo, C. Cardillo and M. Tesauro, Obesity, inflammation and endothelial dysfunction, J. Biol. Regul. Homeost. Agents 28 (2014) 169-176.Search in Google Scholar

38. A. Warnholtz, P. Wild, M. A. Ostad, V. Elsner, F. Stieber, R. Schinzel, U. Walter, D. Peetz, K. Lackner, S. Blankenberg and T. Munzel, Effects of oral niacin on endothelial dysfunction in patients with coronary artery disease: results of the randomized, double-blind, placebo-controlled INEF study, Atherosclerosis 204 (2009) 216-221; DOI: 10.1016/j.atherosclerosis.2008. in Google Scholar

39. S. Sahebkar, Effect of niacin on endothelial function: A systematic review and meta-analysis of randomized controlled trials, Vasc. Med. 19 (2014) 54-66; DOI: 10.1177/1358863X13515766.10.1177/1358863X1351576624391126Search in Google Scholar

40. S. Westphal, K. Borucki, C. Luley, J. Martens-Lobenhoffer and S. M. Bode-Böger, Treatment with niacin lowers ADMA, Atherosclerosis 184 (2006) 448-450; DOI: 10.1016/j.atherosclerosis.2005. in Google Scholar

41. B. J. Wu, K. Chen, P. J. Barter and K. A. Rye, Niacin inhibits vascular inflammation via the induction of heme oxygenase-1, Circulation 125 (2012) 150-158; DOI: 10.1161/CIRCULATIONAHA.111.053108.10.1161/CIRCULATIONAHA.111.05310822095827Search in Google Scholar

42. K. H. Cho, H. J. Kim, B. Rodriguez-Iturbe and N. D. Vaziri, Niacin ameliorates oxidative stress, inflammation, proteinuria, and hypertension in rats with chronic renal failure, Am. J. Physiol. Renal Physiol. 297 (2009) F106-F113; DOI: 10.1152/ajprenal.00126.2009.10.1152/ajprenal.00126.200919420110Search in Google Scholar

43. A. El Atrash, L. Dawood, E. Tousson and A. Salama, Neuroprotective role of vitamin B3 in experimentally induced oxidative stress, Int. J. Clin. Exp. Neurol. 3 (2015) 21-25; DOI: 10.12691/ijcen-3-1-4.Search in Google Scholar

44. S. Hamoud, M. Kaplan, E. Meilin, A. Hassan, R. Torgovicky, R. Cohen and T. Hayek, Niacin administration significantly reduces oxidative stress in patients with hypercholesterolemia and low levels of high-density lipoprotein cholesterol, Am. J. Med. Sci. 345 (2013) 195-199; DOI: 10.1097/ MAJ.0b013e3182548c28.10.1097/MAJ.0b013e3182548c2822990043Search in Google Scholar

45. A. Kei, C. Tellis, E. Liberopoulos, A. Tselepis and M. Elisaf, Effect of switch to the highest dose of rosuvastatin versus add-on-statin fenofibrate versus add-on-statin nicotinic acid/laropiprant on oxidative stress markers in patients with mixed dyslipidemia, Cardiovasc. Ther. 32 (2014) 139-146; DOI: 10.1111/1755-5922.12072.10.1111/1755-5922.1207224618208Search in Google Scholar

46. M Lukasova, C. Malaval, A. Gille, J. Kero and S. Offermanns, Nicotinic acid inhibits progression of atherosclerosis in mice through its receptor GPR109A expressed by immune cells, J. Clin. Invest. 121 (2011) 1163-1173; DOI: 10.1172/JCI41651.10.1172/JCI41651304885421317532Search in Google Scholar

47. W. Y. Kwon, G. J. Suh, K. S. Kim and Y. H. Kwak, Niacin attenuates lung inflammation and improves survival during sepsis by downregulating the nuclear factor-kB pathway, Crit. Care Med. 39 (2011) 328-334; DOI: 10.1097/CCM.0b013e3181feeae4.10.1097/CCM.0b013e3181feeae420975550Search in Google Scholar

48. Y. Si, Y. Zhang, J. Zhao, S. Guo, L. Zhai, S. Yao, H. Sang, N. Yang, G. Song, J. Gu and S. Qin, Niacin inhibits vascular inflammation via downregulating nuclear transcription factor-kB signaling pathway, Mediators Inflamm. 2014 (2014) article ID 263786 (12 pages); DOI: 10.1155/2014/263786.10.1155/2014/263786405849524991087Search in Google Scholar

49. J. T. Kuvin, D. M. Dave, K. A. Sliney, P. Mooney, A. R. Patel, C. D. Kimmelstiel and R. H. Karas, Effects of extended release niacin on lipoprotein particle size, distribution, an inflammatory markers in patients with coronary artery disease, Am. J. Cardiol. 98 (2006) 743-745; DOI:10.1016/j. amjcard.2006.04.011.Search in Google Scholar

50. M. Thoenes, A. Oguchi, S. Nagamia, C. S. Vaccari, R. Hammoud, G. E. Umpierrez and B. V. Khan, The effects of extended-release niacin on carotid intimal media thickness, endothelial function and inflammatory markers in patients with the metabolic syndrome, Int. J. Clin. Pract. 61 (2007) 1942-1948; DOI: 10.1111/j.1742-1241.2007.01597.x.10.1111/j.1742-1241.2007.01597.x17935553Search in Google Scholar

51. P. M. Ridker, M. J. Stampfer and N. Rifai, Novel risk factors for systemic atherosclerosis. A comparison of C-reactive protein, fibrinogen, homocysteine, lipoprotein(a), and standard cholesterol screening as predictors of peripheral arterial disease, JAMA 285 (2001) 2481-2485; DOI: 10.1001/ jama.285.19.2481.10.1001/jama.285.19.248111368701Search in Google Scholar

52. N. Singh, A. Gurav, S. Sivaprakasam, E. Brady, R. Padia, H. Shi, M. Thangaraju, P. D. Prasad, S. Manicassamy, D. H. Munn, J. R. Lee, S. Offermanns and V. Ganapathy, Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis, Immunity 40 (2014) 128-139; DOI: 10.1016/j.immuni.2013. in Google Scholar

53. J. O. Johansson, N. Egberg, A. Asplund-Carlson and L. A. Carlson, Nicotinic acid treatment shifts the fibrinolytic balance favourably and decreases plasma fibrinogen in hypertriglyceridaemic men, J. Cardiovasc. Risk 4 (1997) 165-171; DOI: 10.1177/174182679700400302.10.1177/174182679700400302Search in Google Scholar

54. S. Tavintharan, M. Sivakumar, S. C. Lim and C. F. Sum, Niacin affects cell adhesion molecules and plasminogen activator inhibitor-1 in HepG2 cells, Clin. Chim. Acta 376 (2007) 41-44; DOI: 10.1016/j. cca.2006.07.009.Search in Google Scholar

55. R. S. Rosenson, Antiatherothrombotic effects of nicotinic acid, Atherosclerosis 171 (2003) 87-96; DOI: 10.1016/j.atherosclerosis.2003. in Google Scholar

56. G. Lowe, A. Rumley, J. Norrie, I. Ford, J. Shepherd, S. Cobbe, P. Macfarlane and C. Packard, Blood rheology, cardiovascular risk factors, and cardiovascular disease: the West of Scotland Coronary Prevention Study, Thromb. Haemost. 84 (2000) 553-558. Erratum in: Thromb. Haemost. 85 (2001) 946.Search in Google Scholar

57. L. Wilhelmsen, K. Svärdsudd, K. Korsan-Bengtsen, B. Larsson, L. Welin and G. Tibblin, Fibrinogen as a risk factor for stroke and myocardial infarction, N. Engl. J. Med. 311 (1984) 501-505; DOI: 10.1056/NEJM198408233110804.10.1056/NEJM1984082331108046749207Search in Google Scholar

58. W. B. Kannel, P. A. Wolf, W. P. Castelli and R. B. D‘Agostino, Fibrinogen and risk of cardiovascular disease. The Framingham Study, JAMA 258 (1987) 1183-1186; DOI:10.1001/jama.1987.03400090067035.10.1001/jama.1987.03400090067035Search in Google Scholar

59. J. Ma, C. H. Hennekens, P. M. Ridker and M. J. Stampfer, A prospective study of fibrinogen and risk of myocardial infarction in the physicians‘ health study, J. Am. Coll. Cardiol. 33 (1999) 1347-1352; DOI:10.1016/S0735-1097(99)00007-8.10.1016/S0735-1097(99)00007-8Search in Google Scholar

60. P. Y. Scarabin, D. Arveiler, P. Amouyel, C. Dos Santos, A. Evans, G. Luc, J. Ferrières and I. Juhan- Vague, Prospective epidemiological study of myocardial infarction. Plasma fibrinogen explains much of the difference in risk of coronary heart disease between France and Northern Ireland. The PRIME study, Atherosclerosis 166 (2003) 103-109; DOI: 10.1016/S0021-9150(02)00309-X.10.1016/S0021-9150(02)00309-XSearch in Google Scholar

61. A. Kei and M. Elisaf, Nicotinic acid/laropiprant reduces platelet count but increases mean platelet volume in patiens with primary dyslipidemia, Arch. Med. Sci. 3 (2014) 439-444; DOI: 10.5114/ aoms.2014.43738.10.5114/aoms.2014.43738410725025097572Search in Google Scholar

62. K. Stach, F. Zaddach, X. D. Nguyen, E. Elmas, S. Kralev, C. Weiß, M. Borggrefe and T. Kälsch, Effects of nicotinic acid on endothelial cells and platelets, Cardiovasc. Pathol. 21 (2012) 89-95; DOI: 10.1016/j.carpath.2011. in Google Scholar

63. A. M. Gotto and H. Pownall, Manual of Lipid Disorders, 3rd ed., Lippincott Williams & Wilkins, Philadelphia 2003.Search in Google Scholar

64. L. A. Carlson, Nicotinic acid: the broad-spectrum lipid drug. A 50th anniversary review, J. Intern. Med. 258 (2005) 94-114; DOI: 10.1111/j.1365-2796.2005.01528.x.10.1111/j.1365-2796.2005.01528.x16018787Search in Google Scholar

65. [The Emerging Risk Factors Collaboration] S. Erqou, S. Kaptoge, P. L. Perry, E. A. Di Angelantonio, I. R. Thompson, S. M. White, R. Marcovina, R. Collins, S. G. Thompson and J. Danesh, Lipoprotein(a) concentration and the risk of coronary heart disease, stroke and nonvascular mortality, JAMA 302 (2009) 412-423; DOI: 10.1001/jama.2009.1063.10.1001/jama.2009.1063327239019622820Search in Google Scholar

66. M. L. Koschinsky and S. M. Marcovina, Structure-function relationships in apolipoprotein(a): insights into lipoprotein(a) assembly and pathogenicity, Curr. Opin. Lipidol. 15 (2004) 167-167; DOI: 10.1097/01.mol.0000124528.75650.be.Search in Google Scholar

67. S. Tsimikas, L. D. Tsironis and A. D. Tselepis, New insights into the role of lipoprotein(a)-associated lipoprotein-associated phospholipase A2 in atherosclerosis and cardiovascular disease, Arterioscler. Thromb. Vasc. Biol. 27 (2007) 2094-2099; DOI: 10.1161/01.ATV.0000280571.28102.d4..Search in Google Scholar

68. S. Tsimikas, J. Willeit, M. Knoflach, M. Mayr, G. Egger, M. Notdurfter, J. L. Witztum, C. J. Wiedermann, Q. Xu and S. Kiechl, Lipoprotein-associated phospholipase A2 activity, ferritin levels, metabolic syndrome, and 10-year cardiovascular and non-cardiovascular mortality: results from the Bruneck study, Eur. Heart J. 30 (2009) 107-115; DOI: 10.1093/eurheartj/ehn502.10.1093/eurheartj/ehn50219019993Search in Google Scholar

69. V. Serebruany, A. Malinin, D. Aradi, W. Kuliczkowski, N. B. Norgard and W. E. Boden, The in vitro effects of niacin on platelet biomarkers in human volunteers, Thromb. Haemost. 104 (2010) 311-317; DOI: 10.1160/TH10-01-0015.10.1160/TH10-01-001520539903Search in Google Scholar

70. M. Liu and F. Liu, Transcriptional and post-translational regulation of adiponectin, Biochem. J. 425 (2009) 41-52; DOI: 10.1042/BJ20091045.10.1042/BJ2009104520001961Search in Google Scholar

71. H. Kobayashi, N. Ouchi, S. Kihara, K. Walsh, M. Kumada, Y. Abe, T. Funahashi and Y. Matsuzawa, Selective suppression of endothelial cell apoptosis by the high molecular weight form of adiponectin, Circ. Res. 94 (2004) e27-e31; DOI: 10.1161/01.RES.0000119921.86460.37.10.1161/01.RES.0000119921.86460.37437447914752031Search in Google Scholar

72. M. Kumada, S. Kihara, S. Sumitsuji, T. Kawamoto, S. Matsumoto, N. Ouchi, Y. Arita, Y. Okamoto, I. Shimomura, H. Hiraoka, T. Nakamura, T. Funahashi, Y. Matsuzawa and Osaka CAD Study Group. Coronary artery disease, Association of hypoadiponectinemia with coronary artery disease in men, Arterioscler. Thromb. Vasc. Biol. 23 (2003) 85-89; DOI: 10.1161/01.ATV.0000048856.22331.50.10.1161/01.ATV.0000048856.22331.50Search in Google Scholar

73. F. Otsuka, S. Sugiyama, S. Kojima, H. Maruyoshi, T. Funahashi, K. Matsui, T. Sakamoto, M. Yoshimura, K. Kimura, S. Umemura and H. Ogawa, Plasma adiponectin levels are associated with coronary lesion complexity in men with coronary artery disease, J. Am. Coll. Cardiol. 48 (2006) 1155-1162; DOI: 10.1016/j.jacc.2006. in Google Scholar

74. T. Pischon, C. J. Girman, G. S. Hotamisligil, N. Rifai, F. B. Hu and E. B. Rimm, Plasma adiponectin levels and risk of myocardial infarction in men, JAMA 291 (2004) 1730-1737; DOI: 10.1001/ jama.291.14.1730.10.1001/jama.291.14.173015082700Search in Google Scholar

75. W. Koenig, N. Khuseinova, J. Baumert, C. Meisinger and H. Löwel, Serum concentrations of adiponectin and risk of type 2 diabetes mellitus and coronary heart disease in apparently healthy middle-aged men: results from the 18-year follow-up of a large cohort from southern Germany, J. Am. Coll. Cardiol. 48 (2006) 1369-1377; DOI: 10.1016/j.jacc.2006. in Google Scholar

76. C. Kistorp, J. Faber, S. Galatius, F. Gustafsson, J. Frystyk, A. Flyvbjerg and P. Hildebrandt, Plasma adiponectin, body mass index, and mortality in patients with chronic heart failure, Circulation 112 (2005) 1756-1762; DOI: 10.1161/CIRCULATIONAHA.104.530972.10.1161/CIRCULATIONAHA.104.53097216157772Search in Google Scholar

77. T. Nakamura, H. Funayama, N. Kubo, T. Yasu, M. Kawakami, M. Saito, S. Momomura and S. E. Ishikawa, Association of hyperadiponectinemia with severity of ventricular dysfunction in congestive heart failure, Circ. J. 70 (2006) 1557-1562; DOI: 10.1253/circj.70.1557.10.1253/circj.70.155717127799Search in Google Scholar

78. T. Tamura, Y. Furukawa, R. Taniguchi, Y. Sato, K. Ono, H. Horiuchi, Y. Nakagawa, T. Kita and T. Kimura, Serum adiponectin level as an independent predictor of mortality in patients with congestive heart failure, Circ. J. 71 (2007) 623-630; DOI: 10.1253/circj.71.623.10.1253/circj.71.62317456982Search in Google Scholar

79. L. Chen, W. Y. So, S. Y. Li, Q. Cheng, B. J. Boucher and P. S. Leung, Niacin-induced hyperglycemia is partially mediated via niacin receptor GPR109a in pancreatic islets, Mol. Cell. Endocrinol. 404 (2015) 56-66; DOI: 10.1016/j.mce.2015.01.029. 10.1016/j.mce.2015.01.02925622782Search in Google Scholar

80. T. E. Graham, Q. Yang, M. Blüher, A. Hammarstedt, T. P. Ciaraldi, R. R. Henry, C. J. Wason, A. Oberbach, P. A. Jansson, U. Smith and B. B. Kahn, Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects, N. Engl. J. Med. 354 (2006) 2552-2563; DOI: 10.1056/NEJMoa054862.10.1056/NEJMoa05486216775236Search in Google Scholar

81. Q. Yang, T. E. Graham, N. Mody, F. Preitner, O. D. Peroni, J. M. Zabolotny, K. Kotani, L. Quadro and B. B. Kahn, Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes, Nature 436 (2005) 356-362; DOI: 10.1038/nature03711.10.1038/nature0371116034410Search in Google Scholar

82. V. C. Luft, M. Pereira, J. S. Pankow, C. Ballantyne, D. Couper, G. Heiss and B. B. Duncan, Retinol binding protein 4 and incident diabetes - the Atherosclerosis Risk in Communities Study (ARIC Study), Rev. Bras. Epidemiol. 16 (2013) 388-397; DOI: 10.1590/S1415-790X2013000200014.10.1590/S1415-790X2013000200014492999624142010Search in Google Scholar

83. B. Vergès, B. Guiu, J. P. Cercueil, L. Duvillard, I. Robin, P. Buffier, B. Bouillet, S. Aho, M. C. Brindisi and J. M. Petit, Retinol-binding protein 4 is an independent factor associated with triglycerides and a determinant of very low-density lipoprotein-apolipoprotein B100 catabolism in type 2 diabetes mellitus, Arterioscler. Thromb. Vasc. Biol. 32 (2012) 3050-3057; DOI: 10.1161/ATVBAHA.112.255190.10.1161/ATVBAHA.112.25519023087360Search in Google Scholar

84. D. Wanders, Novel Pleiotropic Effects of Niacin, Ph. D. Thesis, Auburn University, Auburn (AL, USA) 2012.Search in Google Scholar

85. M. M. Heemskerk, H. K. Dharuri, S. A. van den Berg, H. S. Jónasdóttir, D. P. Kloos, M. Giera, K. W. van Dijk and V. van Harmelen, Prolonged niacin treatment leads to increased adipose tissue PUFA synthesis and anti-inflammatory lipid and oxylipin plasma profile, J. Lipid Res. 55 (2014) 2532-2540; DOI: 10.1194/jlr.M051938.10.1194/jlr.M051938424244625320342Search in Google Scholar

86. R. Fischer, A. Konkel, H. Mehling, K. Blossey, A. Gapelyuk, N. Wessel, C. von Schacky, R. Dechend, D. N. Muller, M. Rothe, F. C. Luft, K. Weylandt and W. H. Schunck, Dietary omega-3 fatty acids modulate the eicosanoid profile in man primarily via the CYP-epoxygenase pathway, J. Lipid Res. 55 (2014) 1150-1164; DOI: 10.1194/jlr.M047357.10.1194/jlr.M047357403194624634501Search in Google Scholar

87. S. H. Ganji, G. D. Kukes, N. Lambrecht, M. L. Kashyap and V. S. Kamanna, Therapeutic role of niacin in the prevention and regression of hepatic steatosis in rat model of nonalcoholic fatty liver disease, Am. J. Physiol. Gastrointest. Liver Physiol. 306 (2014) G320-G327; DOI: 10.1152/ajpgi.00181.2013.10.1152/ajpgi.00181.201324356885Search in Google Scholar

88. M. Hara, M. Kurano, K. Tsuneyama, K. Kikuchi, A. Takai, T. Matsushima and K. Tsukamoto, Nicotinic acid prevents and restores steatohepatitis together with amelioration of postprandial dyslipidemia, Arterioscler. Thromb. Vasc. Biol. 34 (2014) A601. American Heart Association (AHA) Arteriosclerosis, Thrombosis and Vascular Biology (ATVB) 2014 Spring Conference, Toronto, Canada, May 1-3, 2014.Search in Google Scholar

89. T. H. Grahn, R. Kaur, J. Yin, M. Schweiger, V. M. Sharma, M. J. Lee, Y. Ido, C. M. Smas, R. Zechner, A. Lass and V. Puri, Fat-specific protein 27 (FSP27) interacts with adipose triglyceride lipase (ATGL) to regulate lipolysis and insulin sensitivity in human adipocytes, J. Biol. Chem. 289 (2014) 12029-12039; DOI: 10.1074/jbc.M113.539890.10.1074/jbc.M113.539890400210924627478Search in Google Scholar

90. E. Fabbrini, B. S. Mohammed, K. M. Korenblat, F. Magkos, J. McCrea, B. W. Patterson and S. Klein, Effect of fenofibrate and niacin on intrahepatic triglyceride content, very low-density lipoprotein kinetics, and insulin action in obese subjects with nonalcoholic fatty liver disease, J. Clin. Endocrinol. Metab. 95 (2010) 2727-2735; DOI: 10.1210/jc.2009-2622.10.1210/jc.2009-2622290207620371660Search in Google Scholar

91. M. Hu, W. C. Chu, S. Yamashita, D. K. Yeung, L. Shi, D. Wang, D. Masuda, Y. Yang and B. Tomlinson, Liver fat reduction with niacin is influenced by DGAT-2 polymorphisms in hypertriglyceridemic patients, J. Lipid Res. 53 (2012) 802-809; DOI: 10.1194/jlr.P023614.10.1194/jlr.P023614330765722315393Search in Google Scholar

92. R. N. Foley, P. S. Parfrey and M. J. Sarnak, Epidemiology of cardiovascular disease in chronic renal disease, J. Am. Soc. Nephrol. 9 (Suppl. 12) (1998) S16-S23.Search in Google Scholar

93. A. S. Go, G. M. Chertow, D. Fan, C. E. McCulloch and C. Y. Hsu, Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization, N. Engl. J. Med. 351 (2004) 1296-1305; DOI: 10.1056/NEJMoa041031. 10.1056/NEJMoa04103115385656Search in Google Scholar

94. M. J. Sarnak, A. S. Levey, A. C. Schoolwerth, J. Coresh, B. Culleton, L. L. Hamm, P. A. McCullough, B. L. Kasiske, E. Kelepouris, M. J. Klag, P. Parfrey, M. Pfeffer, L. Raij, D. J. Spinosa and P. W. Wilson, Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention, Circulation 108 (2003) 2154–2169; DOI: 10.1161/01.CIR.0000095676.90936.80.10.1161/01.CIR.0000095676.90936.8014581387Search in Google Scholar

95. J. Omran, A. Al-Dadah and K. C. Dellsperger, Dyslipidemia in patients with chronic and endstage kidney disease, Cardiorenal Med. 3 (2013) 165–177; DOI: 10.1159/000351985. 10.1159/000351985388419024454313Search in Google Scholar

96. N. D. Vaziri, Causes of dysregulation of lipid metabolism in chronic renal failure, Semin. Dial. 22 (2009) 644–651; DOI: 10.1111/j.1525-139X.2009.00661.x.10.1111/j.1525-139X.2009.00661.x287432320017835Search in Google Scholar

97. V. Tsimihodimos, Z. Mitrogianni and M. Elisaf, Dyslipidemia associated with chronic kidney disease, Open Cardiovasc. Med. J. 5 (2011) 41–48.10.2174/1874192401105010041310635721643500Search in Google Scholar

98. E. A. Friedman, Consequences and management of hyperphosphatemia in patients with renal insufficiency, Kidney Int. Suppl. 95 (2005) S1-S7; DOI: 10.1111/j.1523-1755.2005.09500.x.10.1111/j.1523-1755.2005.09500.x15882307Search in Google Scholar

99. M. Tonelli, N. Pannu and B. Manns, Oral phosphate binders in patients with kidney failure, N. Engl. J. Med. 362 (2010) 1312–1324; DOI: 10.1056/NEJMra0912522.10.1056/NEJMra091252220375408Search in Google Scholar

100. H. J. Kang, D. Y. Kim, S. M. Lee, K. H. Kim, S. H. Han, H. K. Nam, K. H. Kim, S. E. Kim, Y. K. Son and W. S. An, Effect of low-dose niacin on dyslipidemia, serum phosphorus levels and adverse effects in patients with chronic kidney disease, Kidney Res. Clin. Pract. 32 (2013) 21–26; DOI: 10.1016/j.krcp.2012. in Google Scholar

101. D. Maccubbin, D. Tipping, O. Kuznetsova, W. A. Hanlon and A. G. Bostom, Hypophosphatemic effect of niacin in patients without renal failure: a randomized trial, Clin. J. Am. Soc. Nephrol. 5 (2010) 582–589; DOI: 10.2215/CJN.07341009.10.2215/CJN.07341009284970020299362Search in Google Scholar

102. P. Aramwit, R. Srisawadwong and O. Supasyndh, Effectiveness and safety of extended-release nicotinic acid for reducing serum phosphorus in hemodialysis patients, J. Nephrol. 25 (2012) 354–362; DOI: 10.5301/jn.5000011.10.5301/jn.500001121748722Search in Google Scholar

103. K. Kitai, H. Tanaka, S. Tatsymi, Y. Fukunaga, K. Genjida, K. Morita, N. Kuboyama, T. Suzuki, T. Akita, K. Miyamoto and E. Takeda, Nicontinamide inhibits sodium-dependent phosphate cotransport activity in rat small intestine, Nephrol. Dial. Transplant. 14 (1999) 1195–1201; DOI: 10.1093/ndt/14.5.1195.10.1093/ndt/14.5.119510344361Search in Google Scholar

104. S. Shin and S. Lee, Niacin as a drug repositioning candidate for hyperphosphatemia management in dialysis patients, Ther. Clin. Risk Manag. 10 (2014) 875–883; DOI: 10.2147/TCRM.S71559.10.2147/TCRM.S71559Search in Google Scholar

105. M. H. Ahmed, Niacin as potential treatment for dyslipidemia and hyperphosphatemia associated with chronic renal failure: the need for clinical trials, Renal Failure. 32 (2010) 642–646; DOI: 10.3109/08860221003753323.10.3109/08860221003753323Search in Google Scholar

106. E. Streja, C. P. Kovesdy, D. A. Streja, H. Moradi, K. Kalantar-Zadeh and M. L. Kashyap, Niacin and progression of CKD, Am. J. Kidney Dis. 65 (2015) 785–798; DOI: 10.1053/j.ajkd.2014. in Google Scholar

107. M. Al-Hijji, S. S. Martin, P. H. Joshi and S. R. Jones, Effect of equivalent on-treatment apolipoprotein levels on outcomes (from the AIM-HIGH and HPS2-THRIVE), Am. J. Cardiol. 112 (2013) 1697–1700; DOI: 10.1016/j.amjcard.2013. in Google Scholar

108. A. Owada, S. Suda and T. Hata, Antiproteinuric effect of niceritrol, a nicotinic acid derivative, in chronic renal disease with hyperlipidemia: a randomized trial, Am. J. Med. 114 (2003) 347–353; DOI: 10.1016/S0002-9343(02)01567-X.10.1016/S0002-9343(02)01567-XSearch in Google Scholar

109. H. Goel and R. L. Dunbar, Niacin alternatives for dyslipidemia: Fool’s gold or gold mine? Part II: Novel niacin mimetics, Curr. Atheroscler. Rep. 18 (2016) article 17 (13 pages); DOI: 10.1007/s11883-016-0570-9.10.1007/s11883-016-0570-9477347426932224Search in Google Scholar

110. R. S. Birjmohun, B. A. Hutten, J. J. P. Kastelein and E. S. G. Stroes, Efficacy and safety of highdensity lipoprotein cholesterol-increasing compounds: a meta-analysis of randomized controlled trials, J. Am. Coll. Cardiol. 45 (2005) 185–197; DOI: 10.1016/j.jacc.2004. in Google Scholar

111. J. Hanson, A. Gille, S. Zwykiel, M. Lukasova, B. E. Clausen, K. Ahmed, S. Tunaru, A. Wirth and S. Offermanns, Nicotinic acid- and monomethyl fumarate-induced flushing involves GPR109A expressed by keratinocytes and COX-2-dependent prostanoid formation in mice, J. Clin. Invest. 120 (2010) 2910-2919; DOI: 10.1172/JCI42273.10.1172/JCI42273291219420664170Search in Google Scholar

112. R. H. Stern, J. D. Spence, D. J. Freeman and A. Parbtani, Tolerance to nicotinic acid flushing, Clin. Pharmacol. Ther. 50 (1991) 66-70; DOI: 10.1038/clpt.1991.104.10.1038/clpt.1991.1041855354Search in Google Scholar

113. S. Andersson, L. A. Carlson, L. Orö and E. A. Richards, Effect of nicotinic acid on gastric secretion of acid in human subjects and in dogs, Scand. J. Gastroenterol. 6 (1971) 555-559; DOI: 10.3109/00365527109179938.10.3109/003655271091799385139111Search in Google Scholar

114. J. McKenney, New perspectives on the use of niacin in the treatment of lipid disorders, Arch. Intern. Med. 164 (2004) 697-705; DOI: 10.1001/archinte.164.7.697.10.1001/archinte.164.7.697Search in Google Scholar

115. S. S. Bhardwaj and N. Chalasani, Lipid-lowering agents that cause drug-induced hepatotoxicity, Clin. Liver Dis. 11 (2007) 597-613; DOI: 10.1016/j.cld.2007. in Google Scholar

116. J. R. Guyton and H. E. Bays, Safety considerations with niacin therapy, Am. J. Cardiol. 99 (6, Suppl. 1) (2007) S22-S31; DOI: 10.1016/j.amjcard.2006. in Google Scholar

117. J. R. Guyton, S. Fazio, A. J. Adewale, E. Jensen, J. E. Tomassini, A. Shah and A. M. Tershakovec, Effect of extended-release niacin on new-onset diabetes among hyperlipidemic patients treated with ezetimibe/simvastatin in a randomized controlled trial, Diabetes Care 35 (2012) 857-860; DOI: 10.2337/dc11-1369.10.2337/dc11-1369Search in Google Scholar

118. A. M. Poynten, S. K. Gan, A. D. Kriketos, A. O’Sullivan, J. J. Kelly, B. A. Ellis, D. J. Chisholm and L. V. Campbell, Nicotinic acid-induced insulin resistance is related to increased circulating fatty acids and fat oxidation but not muscle lipid content, Metabolism 52 (2003) 699-704; DOI: 10.1016/ S0026-0495(03)00030-1.10.1016/S0026-0495(03)00030-1Search in Google Scholar

119. L. A. Carlson and L.Oro, The effect of nicotinic acid on the plasma free fatty acid; demonstration of a metabolic type of sympathicolysis, Acta Med. Scand. 172 (1962) 641-645; DOI: 10.1111/j.0954-6820.1962.tb07203.x.10.1111/j.0954-6820.1962.tb07203.x14018702Search in Google Scholar

120. M. M. Heemskerk, S. A. A. van den Berg, A. C. M. Pronk, J.-B. van Klinken, M. R. Boon, L. M. Havekes, P. C. N. Rensen, K. W. van Dijk and V. van Harmelen, Long-term niacin treatment induces insulin resistance and adrenergic responsiveness in adipocytes by adaptive downregulation of phosphodiesterase 3B, Am. J. Physiol. Endocrinol. Metabol. 306 (2014) E808-E813; DOI:10.1152/ ajpendo.00641.2013.Search in Google Scholar

121. L. Chen, W. Y. So, S. Y. T. Li, Q. Cheng, B. J. Boucher and P. S. Leung, Niacin-induced hyperglycemia is partially mediated via niacin receptor GPR109a in pancreatic islets, Mol. Cell. Endocrinol. 404 (2015) 56-66; DOI: 10.1016/j.mce.2015. in Google Scholar

122. T. P. Wong, L. K. Y. Chan and P. S. Leung, Involvement of the niacin receptor GPR109a in the local control of glucose uptake in small intestine of type 2 diabetic mice, Nutrients 7 (2015) 7543-7561; DOI: 10.3390/nu7095352.10.3390/nu7095352458654726371038Search in Google Scholar

123. C. Goldie, A. J. Taylor, P. Nguyen, C. McCoy, X.-Q. Zhao and D. Preiss, Niacin therapy and the risk of new-onset diabetes: A meta-analysis of randomised controlled trials, Heart 102 (2016) 198-203; DOI: 10.1136/heartjnl-2015-308055.10.1136/heartjnl-2015-308055475261326370223Search in Google Scholar

124. P. L. Canner, C. D. Furberg, M. L. Terrin and M. E. McGovern, Benefits of niacin by glycemic status in patients with healed myocardial infarction (from the Coronary Drug Project), Am. J. Cardiol. 95 (2005) 254-257; DOI: 10.1016/j.amjcard.2004. in Google Scholar

125. S. L.Gershon and I. H. Fox, Pharmacologic effects of nicotinic acid on human purine metabolism, J. Lab. Clin. Med. 84 (1974) 179-186.Search in Google Scholar

126. Z. N. Gaut, R. Pocelinko, H. M. Solomon and G. B. Thomas, Oral glucose tolerance, plasma insulin, and uric acid excretion in man during chronic administration of nicotinic acid, Metabolism 20 (1971) 1031-1035; DOI: 10.1016/0026-0495(71)90026-6. 10.1016/0026-0495(71)90026-6Search in Google Scholar

127. D. Domanico, F. Verboschi, S. Altimari, L. Zompatori and E. M. Vingolo, Ocular effects of niacin: A review of the literature, Med. Hypothesis Discov. Innov. Ophthalmol. 4 (2015) 64–71.Search in Google Scholar

128. H. Stals, C. Vercammen, C. Peeters and M. A. Morren, Acanthosis nigricans caused by nicotinic acid: case report and review of the literature, Dermatology 189 (1994) 203–206; DOI: 10.1159/000246834.10.1159/000246834Search in Google Scholar

129. A. G. Gharavi, J. A. Diamond, D. A. Smith and R. A. Phillips, Niacin-induced myopathy, Am. J. Cardiol. 74 (1994) 841–842; DOI: 10.1016/0002-9149(94)90453-7.10.1016/0002-9149(94)90453-7Search in Google Scholar

130. A. Pandian, A. Arora, L. S. Sperlinga and B. V. Khan, Targeting mulitple dyslipidemias with fixed combinations – focus on extended release niacin and simvastatin, Vasc. Health Risk Manag. 4 (2008) 1001–1009; DOI: 10.2147/VHRM.S3460.10.2147/VHRM.S3460260534219183748Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo