Open Access

Plasma amino acid levels in a cohort of patients in Turkey with classical phenylketonuria


Cite

Blau N, van Spronsen FJ, Levy HL. Phenylketonuria. Lancet. 2010; 376(9750):1417–27.BlauNvan SpronsenFJLevyHLPhenylketonuriaLancet2010376975014172710.1016/S0140-6736(10)60961-0Search in Google Scholar

van Wegberg AMJ, MacDonald A, Ahring K, Bélanger-Quintana A, Blau N, Bosch AM, et al. The complete European guidelines on phenylketonuria: diagnosis and treatment. Orphanet J Rare Dis. 2017; 12:162. doi: 10.1186/s13023-017-0685-2van WegbergAMJMacDonaldAAhringKBélanger-QuintanaABlauNBoschAMThe complete European guidelines on phenylketonuria: diagnosis and treatmentOrphanet J Rare Dis20171216210.1186/s13023-017-0685-2563980329025426Open DOISearch in Google Scholar

van Vliet D, van Wegberg AMJ, Ahring K, Bik-Multanowski M, Blau N, Bulut FD, et al. Can untreated PKU patients escape from intellectual disability? A systematic review. Orphanet J Rare Dis. 2018; 13:149. doi: 10.1186/s13023-018-0890-7van VlietDvan WegbergAMJAhringKBik-MultanowskiMBlauNBulutFDCan untreated PKU patients escape from intellectual disability? A systematic reviewOrphanet J Rare Dis20181314910.1186/s13023-018-0890-7611636830157945Open DOISearch in Google Scholar

Didycz B, Bik-Multanowski M. Dynamics of hyperphenylalaninemia and intellectual outcome in teenagers with phenylketonuria. Acta Biochim Pol. 2017; 64:527–31.DidyczBBik-MultanowskiMDynamics of hyperphenylalaninemia and intellectual outcome in teenagers with phenylketonuriaActa Biochim Pol2017645273110.18388/abp.2017_152428850634Search in Google Scholar

Burgard P, Lachmann RH, Walter J. Hyperphenylalaninaemia. In: Saudubray JM, Van den Berghe G, Walter J, editors. Inborn metabolic diseases: diagnosis and treatment. 6th ed. New York: Springer; 2016, p. 253–4.BurgardPLachmannRHWalterJHyperphenylalaninaemiaIn:SaudubrayJMVan den BergheGWalterJeditors.Inborn metabolic diseases: diagnosis and treatment6th ed.New YorkSpringer2016253410.1007/978-3-662-49771-5_16Search in Google Scholar

MacDonald A, Singh RH, Rocha JC, van Spronsen FJ. Optimising amino acid absorption: essential to improve nitrogen balance and metabolic control in phenylketonuria. Nutr Res Rev. 2019; 32:70–8.MacDonaldASinghRHRochaJCvan SpronsenFJOptimising amino acid absorption: essential to improve nitrogen balance and metabolic control in phenylketonuriaNutr Res Rev20193270810.1017/S0954422418000173653682330284526Search in Google Scholar

de la Parra A, García MI, Hamilton V, Arias C, Cabello JF, Cornejo V. First-year metabolic control guidelines and their impact on future metabolic control and neurocognitive functioning in children with PKU. Mol Gent Metab Rep. 2017; 13:90–4.de la ParraAGarcíaMIHamiltonVAriasCCabelloJFCornejoVFirst-year metabolic control guidelines and their impact on future metabolic control and neurocognitive functioning in children with PKUMol Gent Metab Rep20171390410.1016/j.ymgmr.2017.09.003563324729021962Search in Google Scholar

Pinto A, Adams S, Ahring K, Allen H, Almeida MF, Garcia-Arenas D, et al. Early feeding practices in infants with phenylketonuria across Europe. Mol Genet Metab Rep. 2018; 16:82–9.PintoAAdamsSAhringKAllenHAlmeidaMFGarcia-ArenasDEarly feeding practices in infants with phenylketonuria across EuropeMol Genet Metab Rep20181682910.1016/j.ymgmr.2018.07.008608299130101073Search in Google Scholar

Uaariyapanichkul J, Chomtho S, Suphapeetiporn K, Shotelersuk V, Punnahitananda S, Chinjarernpan P, Suteerojntrakool O. Age-related reference intervals for blood amino acids in Thai pediatric population measured by liquid chromatography tandem mass spectrometry. J Nutr Metab. 2018; 2018:5124035. doi: 10.1155/2018/5124035UaariyapanichkulJChomthoSSuphapeetipornKShotelersukVPunnahitanandaSChinjarernpanPSuteerojntrakoolOAge-related reference intervals for blood amino acids in Thai pediatric population measured by liquid chromatography tandem mass spectrometryJ Nutr Metab201820185124035.10.1155/2018/5124035596052529854440Open DOISearch in Google Scholar

Fingerhut R, Silva Polanco ML, Silva Arevalo Gde J, Swiderska MA. First experience with a fully automated extraction system for simultaneous on-line direct tandem mass spectrometric analysis of amino acids and (acyl-) carnitines in a newborn screening setting. Rapid Commun Mass Spectrom. 2014; 28:965–73.FingerhutRSilva PolancoMLSilva Arevalo GdeJSwiderskaMAFirst experience with a fully automated extraction system for simultaneous on-line direct tandem mass spectrometric analysis of amino acids and (acyl-) carnitines in a newborn screening settingRapid Commun Mass Spectrom2014289657310.1002/rcm.685624623702Search in Google Scholar

Zabielski P, Ford GC, Persson XM, Jaleel A, Dewey JD, Nair KS. Comparison of different mass spectrometry techniques in the measurement of L-[ring-13C6] phenylalanine incorporation into mixed muscle proteins. J Mass Spectrom. 2013; 48:269–75.ZabielskiPFordGCPerssonXMJaleelADeweyJDNairKSComparison of different mass spectrometry techniques in the measurement of L-[ring-13C6] phenylalanine incorporation into mixed muscle proteinsJ Mass Spectrom2013482697510.1002/jms.3120372163423378099Search in Google Scholar

Eggers AE. A serotonin hypothesis of schizophrenia. Med Hypotheses. 2013; 80:791–4.EggersAEA serotonin hypothesis of schizophreniaMed Hypotheses201380791410.1016/j.mehy.2013.03.01323557849Search in Google Scholar

Cao B, Wang D, Brietzke E, McIntyre RS, Pan Z, Cha D, et al. Characterizing amino-acid biosignatures amongst individuals with schizophrenia: a case-control study. Amino Acids. 2018; 50:1013–23.CaoBWangDBrietzkeEMcIntyreRSPanZChaDCharacterizing amino-acid biosignatures amongst individuals with schizophrenia: a case-control studyAmino Acids20185010132310.1007/s00726-018-2579-629796929Search in Google Scholar

Belanger AM, Przybylska M, Gefteas E, Furgerson M, Geller S, Kloss A, et al. Inhibiting neutral amino acid transport for the treatment of phenylketonuria. JCI Insight. 2018; 3:e121762. doi: 10.1172/jci.insight.121762BelangerAMPrzybylskaMGefteasEFurgersonMGellerSKlossAInhibiting neutral amino acid transport for the treatment of phenylketonuriaJCI Insight20183e12176210.1172/jci.insight.121762612445130046012Open DOISearch in Google Scholar

González García MB, Conde-Guzon P, Alcalde Martín C, Conde-Guzon MJ, Velasco Zúñiga R. Neuropsychological assessment among children and adolescents with phenylketonuria and hyperphenylalaninemia and its relationship with plasma phenylalanine levels. Arch Argent Pediatr. 2017; 115:267–73.González GarcíaMBConde-GuzonPAlcalde MartínCConde-GuzonMJVelasco ZúñigaRNeuropsychological assessment among children and adolescents with phenylketonuria and hyperphenylalaninemia and its relationship with plasma phenylalanine levelsArch Argent Pediatr20171152677310.5546/aap.2017.eng.267Search in Google Scholar

Keyfi F, Nasseri M, Nayerabadi S, Alaei A, Mokhtariye A, Varasteh A. Frequency of inborn errors of metabolism in a Northeastern Iranian sample with high consanguinity rates. Hum Hered. 2018; 83:71–8.KeyfiFNasseriMNayerabadiSAlaeiAMokhtariyeAVarastehAFrequency of inborn errors of metabolism in a Northeastern Iranian sample with high consanguinity ratesHum Hered20188371810.1159/00048887630036870Search in Google Scholar

Tezel B, Dilli D, Bolat H, Sahman H, Ozbaş S, Acıcan D, et al. The development and organization of newborn screening programs in Turkey. J Clin Lab Anal. 2014; 28:63–9.TezelBDilliDBolatHSahmanHOzbaşSAcıcanDThe development and organization of newborn screening programs in TurkeyJ Clin Lab Anal20142863910.1002/jcla.21645680756824375520Search in Google Scholar

Walkowiak D, Bukowska-Posadzy A, Kałużny Ł, Ołtarzewski M, Staszewski R, Musielak M, et al. Therapy compliance in children with phenylketonuria younger than 5 years: a cohort study. Adv Clin Exp Med. 2019; 28:1385–91.WalkowiakDBukowska-PosadzyAKałużnyŁOłtarzewskiMStaszewskiRMusielakMTherapy compliance in children with phenylketonuria younger than 5 years: a cohort studyAdv Clin Exp Med20192813859110.17219/acem/10453631469949Search in Google Scholar

Peng H, Peck D, White DA, Christ SE. Tract-based evaluation of white matter damage in individuals with early-treated phenylketonuria. J Inherit Metab Dis. 2014; 37:237–43.PengHPeckDWhiteDAChristSETract-based evaluation of white matter damage in individuals with early-treated phenylketonuriaJ Inherit Metab Dis2014372374310.1007/s10545-013-9650-y24043380Search in Google Scholar

Sadek AA, Hassan MH, Mohammed NA. Clinical and neuropsychological outcomes for children with phenylketonuria in Upper Egypt; a single-center study over 5 years. Neuropsychiatr Dis Treat. 2018; 14:2551–61.SadekAAHassanMHMohammedNAClinical and neuropsychological outcomes for children with phenylketonuria in Upper Egypt; a single-center study over 5 yearsNeuropsychiatr Dis Treat20181425516110.2147/NDT.S176198617972130323604Search in Google Scholar

Romani C, Palermo L, MacDonald A, Limback E, Hall SK, Geberhiwot T. The impact of phenylalanine levels on cognitive outcomes in adults with phenylketonuria: Effects across tasks and developmental stages. Neuropsychology. 2017; 31:242–54.RomaniCPalermoLMacDonaldALimbackEHallSKGeberhiwotTThe impact of phenylalanine levels on cognitive outcomes in adults with phenylketonuria: Effects across tasks and developmental stagesNeuropsychology2017312425410.1037/neu0000336533192228240926Search in Google Scholar

White DA, Antenor-Dorsey JA, Grange DK, Hershey T, Rutlin J, Shimony JS, et al. White matter integrity and executive abilities following treatment with tetrahydrobiopterin (BH4) in individuals with phenylketonuria. Mol Genet Metab. 2013; 110:213–7.WhiteDAAntenor-DorseyJAGrangeDKHersheyTRutlinJShimonyJSWhite matter integrity and executive abilities following treatment with tetrahydrobiopterin (BH4) in individuals with phenylketonuriaMol Genet Metab2013110213710.1016/j.ymgme.2013.07.010383228823928118Search in Google Scholar

Yuan YS, Zhou XJ, Tong Q, Zhang L, Zhang L, Qi ZQ, et al. Change in plasma levels of amino acid neurotransmitters and its correlation with clinical heterogeneity in early Parkinson's disease patients. CNS Neurosci Ther. 2013; 19:889–96.YuanYSZhouXJTongQZhangLZhangLQiZQChange in plasma levels of amino acid neurotransmitters and its correlation with clinical heterogeneity in early Parkinson's disease patientsCNS Neurosci Ther2013198899610.1111/cns.12165649359423981689Search in Google Scholar

Bugajska J, Berska J, Wojtyto T, Bik-Multanowski M, Sztefko K. The amino acid profile in blood plasma of young boys with autism. Psychiatr Pol. 2017; 51:359–68.BugajskaJBerskaJWojtytoTBik-MultanowskiMSztefkoKThe amino acid profile in blood plasma of young boys with autismPsychiatr Pol2017513596810.12740/PP/6504628581543Search in Google Scholar

Khemir S, Halayem S, Azzouz H, Siala H, Ferchichi M, Guedria A, et al. Autism in phenylketonuria patients: from clinical presentation to molecular defects. J Child Neurol. 2016; 31:843–9.KhemirSHalayemSAzzouzHSialaHFerchichiMGuedriaAAutism in phenylketonuria patients: from clinical presentation to molecular defectsJ Child Neurol201631843910.1177/088307381562363626759449Search in Google Scholar

Zaki MM, Abdel-Al H, Al-Sawi M. Assessment of plasma amino acid profile in autism using cation-exchange chromatography with postcolumn derivatization by ninhydrin. Turk J Med Sci. 2017; 47:260–7.ZakiMMAbdel-AlHAl-SawiMAssessment of plasma amino acid profile in autism using cation-exchange chromatography with postcolumn derivatization by ninhydrinTurk J Med Sci201747260710.3906/sag-1506-10528263499Search in Google Scholar

Ogawa S, Koga N, Hattori K, Matsuo J, Ota M, Hori H, et al. Plasma amino acid profile in major depressive disorder: analyses in two independent case-control sample sets. J Psychiatr Res. 2018; 96:23–32.OgawaSKogaNHattoriKMatsuoJOtaMHoriHPlasma amino acid profile in major depressive disorder: analyses in two independent case-control sample setsJ Psychiatr Res201896233210.1016/j.jpsychires.2017.09.01428950111Search in Google Scholar

eISSN:
1875-855X
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Medicine, Assistive Professions, Nursing, Basic Medical Science, other, Clinical Medicine