Open Access

Migrating Monoliths to Microservices Integrating Robotic Process Automation into the Migration Approach


Cite

[1] M. Abdullah, W. Iqbal, A. Erradi, “Unsupervised learning approach for web application auto-decomposition into microservices”, Journal of Systems and Software, 151, 2019, pp. 243–257. DOI: 10.1016/j.jss.2019.02.031 Search in Google Scholar

[2] M. Aiello, E.B. Johnsen, S. Dustdar, I. Georgievski, (Eds.), Service-Oriented and Cloud Computing. Cham: Springer International Publishing (Lecture Notes in Computer Science), 2016. Search in Google Scholar

[3] A. A. C. de Alwis, A. Barros, C. Fidge, A. Polyvyanyy, “Availability and Scalability Optimized Microservice Discovery from Enterprise Systems”, in H. Panetto, C. Debruyne, M. Hepp, D. Lewis, C. A. Ardagna, R. Meersman (Eds.), On the Move to Meaningful Internet Systems: OTM 2019 Conferences, vol. 11877, Cham: Springer International Publishing (Lecture Notes in Computer Science), 2019, pp. 496–514. Search in Google Scholar

[4] A. A. C. de Alwis, A. Barros, C. Fidge, A. Polyvyanyy, “Business Object Centric Microservices Patterns”, in H. Panetto, C. Debruyne, M. Hepp, D. Lewis, C. A. Ardagna, R. Meersman (Eds.), On the Move to Meaningful Internet Systems: OTM 2019 Conferences, vol. 11877. Cham: Springer International Publishing (Lecture Notes in Computer Science), 2019, pp. 476–495. Search in Google Scholar

[5] Another Monday Intelligent Process Automation GmbH, AM Muse, Version 1.35: Another Monday Intelligent Process Automation GmbH, 2020. https://www.anothermonday.com/products/am-muse Search in Google Scholar

[6] G. Auth, C. Czarnecki, F. Bensberg, “Impact of Robotic Process Automation on Enterprise Architectures”, in Lecture Notes in Informatics (LNI), 2019. DOI: 10.18420/INF2019_WS05 Search in Google Scholar

[7] L. Baresi, M. Garriga, A. de Renzis, “Microservices Identification Through Interface Analysis”, in F. de Paoli, S. Schulte, E. B. Johnsen (Eds.): Service-Oriented and Cloud Computing, vol. 10465. Cham: Springer International Publishing (Lecture Notes in Computer Science), 2017, pp. 19–33. Search in Google Scholar

[8] L. Bass, I. M. Weber, L. Zhu, DevOps, A software architect’s perspective, New York: Addison-Wesley Professional (The SEI series in software engineering), 2015. Search in Google Scholar

[9] S. Berghaus, A. Back, “Stages in Digital Business Transformation: Results of an Empirical Maturity Study”, MCIS 2016 Proceedings, 22, 2016. https://aisel.aisnet.org/mcis2016/22, checked on 2/19/2020 Search in Google Scholar

[10] F. Boyer, X. Etchevers, N. de Palma, X. Tao, “Architecture-Based Automated Updates of Distributed Microservices”, in C. Pahl, M. Vukovic, J. Yin, Q. Yu (Eds.): Service-Oriented Computing, vol. 11236, Cham: Springer International Publishing (Lecture Notes in Computer Science), 2018, pp. 21–36. Search in Google Scholar

[11] A. Bucchiarone, K. Soysal, C. Guidi, “A Model-Driven Approach Towards Automatic Migration to Microservices”, in Jean-Michel Bruel, Manuel Mazzara, Bertrand Meyer (Eds.): Software Engineering Aspects of Continuous Development and New Paradigms of Software Production and Deployment, vol. 12055, Cham: Springer International Publishing (Lecture Notes in Computer Science), 2020, pp. 15–36. Search in Google Scholar

[12] R. Chen, S. Li, Z. Li, “From Monolith to Microservices: A Dataflow-Driven Approach”, in 2017 24th Asia-Pacific Software Engineering Conference (APSEC), 2017 24th Asia-Pacific Software Engineering Conference (APSEC), Nanjing, 04/12/2017 - 08/12/2017: IEEE, 2017, pp. 466–475. Search in Google Scholar

[13] C. Czarnecki, P. Fettke, “Robotic Process Automation: De Gruyter”, 2021. https://doi.org/10.1515/9783110676693 Search in Google Scholar

[14] T. H. Davenport, The new industrial engineering: information technology and business process redesign” in Sloan management review, 1954 (1990). Search in Google Scholar

[15] D. Escobar, D. Cardenas, R. Amarillo, E. Castro, K. Garces, C. Parra, R. Casallas, “Towards the understanding and evolution of monolithic applications as microservices” in 2016 XLII Latin American Computing Conference (CLEI), 2016 XLII Latin American Computing Conference (CLEI), Valparaíso, Chile, 10/10/2016 – 14/10/2016: IEEE, 2016, pp. 1–11. Search in Google Scholar

[16] M. Fowler, J. Lewis, “Microservices: Nur ein weiteres Konzept in der Softwarearchitektur oder mehr”, in Journal of Systems and Software, 2015, pp. 14–20. Search in Google Scholar

[17] M. Garriga, “Towards a Taxonomy of Microservices Architectures”, in Software Engineering and Formal Methods, 2018, pp. 203–218. Search in Google Scholar

[18] J. Ghofrani, D. Lübke, “Challenges of Microservices Architecture: A Survey on the State of the Practice”, 2018. Search in Google Scholar

[19] A. Henry, Y. Ridene, “Migrating to Microservices”, in A. Bucchiarone, N. Dragoni, S. Dustdar (Eds.), Microservices. Science and engineering, Cham: Springer International Publishing, 2020, pp. 45–72. Search in Google Scholar

[20] T. Hess, C. Matt, A. Benlian, F. Wiesboeck, “Options for formulating a digital transformation strategy”, in MIS Quarterly Executive (15), 2016, pp. 123–139. Search in Google Scholar

[21] A. R. Hevner, “A Three Cycle View of Design Science Research”, Scandinavian Journal of Information Systems, Volume 19, Issue 2, 2007, pp. 87-92. Search in Google Scholar

[22] M. Hilbrich, “In Microservices We Trust – Do Microservices Solve Resilience Challenges?”, Tagungsband des FB-SYS Herbsttreffens 2019. Bonn: Gesellschaft für Informatik e.V., 2019. DOI: 10.18420 Search in Google Scholar

[23] A. Hochrein, “Anatomy of a Microservice”, in Akos Hochrein (Ed.): Designing microservices with Django, An overview of tools and practices, 1st edition, [S.l.]: Apress, 2019, pp. 49–68. Search in Google Scholar

[24] A. Hochrein, “From Monolith to Microservice”, in Akos Hochrein (Ed.): Designing microservices with Django, An overview of tools and practices, 1st edition, [S.l.]: Apress, 2019, pp. 111–137. Search in Google Scholar

[25] J. Holmström, M. Ketokivi Mikko, A.-P. Hameri, “Bridging Practice and Theory: A Design Science Approach”, in Decision Sciences Volume 40, Issue 1, 2009, pp. 65-87. Search in Google Scholar

[26] P. Jamshidi, C. Pahl, N. C. Mendonça, “Pattern-based multi-cloud architecture migration”, in Software Practice and Experience 47 (9), 2017, pp. 1159–1184. DOI: 10.1002/spe.2442 Search in Google Scholar

[27] J. Mooney, V. Gurbaxani, K. L. Kraemer, “A Process Oriented Framework for Assessing the Business Value of Information Technology”, Forthcoming in the Proceedings of the Sixteenth Annual International Conference on Information Systems, 2001. Search in Google Scholar

[28] M. Kalske, N. Mäkitalo, T. Mikkonen, “Challenges When Moving from Monolith to Microservice Architecture”, in I. Garrigós, M. Wimmer (Eds.): Current Trends in Web Engineering, Cham: Springer International Publishing, 2018, pp. 32–47. Search in Google Scholar

[29] R. Khadka, A. Saeidi, S. Jansen, J. Hage, G. P. Haas, “Migrating a large scale legacy application to SOA: Challenges and lessons learned”, in 2013 20th Working Conference on Reverse Engineering (WCRE), 2013 20th Working Conference on Reverse Engineering (WCRE), Koblenz, Germany, 14/10/2013 - 17/10/2013: IEEE, 2013, pp. 425–432. Search in Google Scholar

[30] M. C. Lacity, L. P. Willcocks, “What Knowledge Workers Stand to Gain from Automation”, Harvard Business Review, 2015. https://hbr.org/2015/06/what-knowledge-workers-stand-to-gain-from-automation, last checked 23.08.2021 Search in Google Scholar

[31] S. Li, H. Zhang, Z. Jia, Z. Li, C. Zhang, J. Li et al., “A dataflow-driven approach to identifying microservices from monolithic applications”, Journal of Systems and Software 157, 2019, p. 110380. DOI: 10.1016/j.jss.2019.07.008 Search in Google Scholar

[32] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, S. Pallickara, “Serverless Computing: An Investigation of Factors Influencing Microservice Performance”, in 2018 IEEE International Conference on Cloud Engineering (IC2E), 2018 IEEE International Conference on Cloud Engineering (IC2E), Orlando, FL, 17/04/2018 - 20/04/2018: IEEE, 2018, pp. 159–169. Search in Google Scholar

[33] S.-P. Ma, C.-Y. Fan, Y. Chuang, I.-H. Liu, C.-W. Lan, “Graph-based and scenario-driven microservice analysis, retrieval, and testing”, Future Generation Computer Systems, 100, 2019, pp. 724–735. DOI: 10.1016/j.future.2019.05.048 Search in Google Scholar

[34] S. A. Maisto, B. Di Martino, S. Nacchia, “From Monolith to Cloud Architecture Using Semi-automated Microservices Modernization”, in L. Barolli, P. Hellinckx, J. Natwichai (Eds.): Advances on P2P, Parallel, Grid, Cloud and Internet Computing, vol. 96, Cham: Springer International Publishing (Lecture Notes in Networks and Systems), 2020, pp. 638–647. Search in Google Scholar

[35] A. Megargel, V. Shankararaman, D. K. Walker, “Migrating from Monoliths to Cloud-Based Microservices: A Banking Industry Example”, in M. Ramachandran, Z. Mahmood (Eds.), Software Engineering in the Era of Cloud Computing, Cham: Springer International Publishing (Computer Communications and Networks), 2020, pp. 85–108. Search in Google Scholar

[36] S. Newman, “Building microservices. Designing fine-grained systems”, Sebastopol, CA: O’Reilly Media, 2015. Search in Google Scholar

[37] L. Nunes, N. Santos, A. R. Silva, “From a Monolith to a Microservices Architecture: An Approach Based on Transactional Contexts” in T. Bures, L. Duchien, P. Inverardi (Eds.): Software Architecture, vol. 11681, Cham: Springer International Publishing (Lecture Notes in Computer Science), 2019, pp. 37–52. Search in Google Scholar

[38] A. M. O’Brien, C. Mc Guckin, The Systematic Literature Review Method: Trials and Tribulations of Electronic Database Searching at Doctoral Level, 2016. Search in Google Scholar

[39] A. J. Onwuegbuzie, N. L. Leech, K. M. T. Collins, “Qualitative Analysis Techniques for the Review of the Literature”, The Qualitative Report, 17, 2012, pp. 1–28. Search in Google Scholar

[40] I. Pigazzini, F. A. Fontana, A. Maggioni, “Tool Support for the Migration to Microservice Architecture: An Industrial Case Study”, in T. Bures, L. Duchien, P. Inverardi (Eds.): Software Architecture, vol. 11681, Cham: Springer International Publishing (Lecture Notes in Computer Science), 2019, pp. 247–263. Search in Google Scholar

[41] H. C. da Silva Filho, G. de Figueiredo Carneiro, “Strategies Reported in the Literature to Migrate to Microservices Based Architecture”, in Shahram Latifi (Ed.): 16th International Conference on Information Technology-New Generations (ITNG 2019), vol. 800, Cham: Springer International Publishing (Advances in Intelligent Systems and Computing), 2019, pp. 575–580. Search in Google Scholar

[42] H. A. Simon, “The Sciences of the Artificial, Third Edition”, 2019. Search in Google Scholar

[43] D. Taibi, K. Systä, “A Decomposition and Metric-Based Evaluation Framework for Microservices”, in D. Ferguson, V. Méndez Muñoz, C. Pahl, M. Helfert (Eds.): Cloud Computing and Services Science, vol. 1218, Cham: Springer International Publishing (Communications in Computer and Information Science), 2020, pp. 133–149. Search in Google Scholar

[44] J. Thones, “Microservices”, In IEEE Softw., 32(1), 2015, p. 116. DOI: 10.1109/MS.2015.11 Search in Google Scholar

[45] UiPath (2020): UI Task Capture: UiPath. Available online at https://www.uipath.com/product/task-capture, checked on 5/25/2020. Search in Google Scholar

[46] W. M. P. van der Aalst, M. Bichler, A. Heinzl, “Robotic Process Automation, Bus Inf Syst Eng, 60(4), 2018, S. 269–272. DOI: 10.1007/s12599-018-0542-4 Search in Google Scholar