Open Access

Experimental Investigation of Amplitude-Modulated Waves for Flame Extinguishing: A Case of Acoustic Environmentally Friendly Technology


Cite

Loboichenko V., Wilk-Jakubowski J., Wilk-Jakubowski G., Harabin R., Shevchenko R., Strelets V., Levterov A., Soshinskiy A., Tregub N., Antoshkin O. The Use of Acoustic Effects for the Prevention and Elimination of Fires as an Element of Modern Environmental Technologies. Environmental and Climate Technologies 2022:26(1):319–330. https://doi.org/10.2478/rtuect-2022-0024 Search in Google Scholar

Ivanov S., Stankov S. Acoustic Extinguishing of Flames Detected by Deep Neural Networks in Embedded Systems. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2021:XLVI-4/W5-2021:307–312. https://doi.org/10.5194/isprs-archives-XLVI-4-W5-2021-307-2021 Search in Google Scholar

Wilk-Jakubowski J., Stawczyk P., Ivanov S., Stankov S. Control of acoustic extinguisher with Deep Neural Networks for fire detection. Elektronika ir Elektrotechnika 2022:28(1):52–59. https://doi.org/10.5755/j02.eie.24744 Search in Google Scholar

Ivanov S., Stankov S., Wilk-Jakubowski J., Stawczyk P. The using of Deep Neural Networks and acoustic waves modulated by triangular waveform for extinguishing fires. Presented at International Workshop on New Approaches for Multidimensional Signal Processing (NAMSP 2020), Technical University of Sofia, Sofia, Bulgaria, 2020. New Approaches for Multidimensional Signal Processing (‘Smart Innovation, Systems and Technologies’ series) 2021:216:207–218. https://doi.org/10.1007/978-981-33-4676-5_16 Search in Google Scholar

Wilk-Jakubowski J., Stawczyk P., Ivanov S., Stankov S. The using of Deep Neural Networks and natural mechanisms of acoustic waves propagation for extinguishing flames. International Journal of Computational Vision and Robotics 2022:12(2):101–119. https://doi.org/10.1504/IJCVR.2021.10037050 Search in Google Scholar

Ivanov S., Stankov S. The Artificial Intelligence Platform with the Use of DNN to Detect Flames: A Case of Acoustic Extinguisher. Lecture Notes in Networks and Systems 2022:371:24–34. https://doi.org/10.1007/978-3-030-93247-3_3 Search in Google Scholar

Wilk-Jakubowski J., Stawczyk P., Ivanov S., Stankov S. High-power acoustic fire extinguisher with artificial intelligence platform. International Journal of Computational Vision and Robotics 2022:12(3):236–249. https://doi.org/10.1504/IJCVR.2021.10039861 Search in Google Scholar

Sharma D., Sharma B., Mantri A., Goyal N., Singla N. Dhwani Fire: Aerial System for Extinguishing Fire. ECS Transactions 2022:107(1):10295–10301. https://doi.org/10.1149/10701.10295ecst Search in Google Scholar

Li Y., Zhang Y., Pan A., Han M., Veglianti E. Carbon emission reduction effects of industrial robot applications: Heterogeneity characteristics and influencing mechanisms. Technology in Society 2022:70:102034. https://doi.org/10.1016/j.techsoc.2022.102034 Search in Google Scholar

Chiou M., Epsimos G.-T., Nikolaou G., Pappas P., Petousakis G., Muhl S., Stolkin R. Robot-Assisted Nuclear Disaster Response: Report and Insights from a Field Exercise. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2022), Kyoto, 2022. https://doi.org/10.1109/IROS47612.2022.9981881 Search in Google Scholar

Szcześniak A., Szcześniak Z. Algorithmic Method for the Design of Sequential Circuits with the Use of Logic Elements. Applied Sciences 2021:11(23):11100. https://doi.org/10.3390/app112311100 Search in Google Scholar

Wilk-Jakubowski G., Harabin R., Ivanov S. Robotics in crisis management: a review. Technology in Society 2022:68:101935. https://doi.org/10.1016/j.techsoc.2022.101935 Search in Google Scholar

Wilk-Jakubowski G., Harabin R., Skoczek T., Wilk-Jakubowski J. Preparation of the Police in the Field of Counterterrorism in Opinions of the Independent Counter-terrorist Sub-division of the Regional Police Headquarters in Cracow. Slovak Journal of Political Sciences 2022:22(2):174–208 [Online]. [Accessed 20.02.2023]. Available: http://sjps.fsvucm.sk/index.php/sjps/article/view/355 Search in Google Scholar

Ma Y., Jiang H., Li J., Yu H., Li C., Zhang D. Design of Marine Satellite Communication System Based on VSAT Technique. International Conference on Computer, Internet of Things and Control Engineering (CITCE), Guangzhou, 2021. https://doi.org/10.1109/CITCE54390.2021.00031 Search in Google Scholar

Šerić L., Stipanicev D., Krstinić D. ML/AI in Intelligent Forest Fire Observer Network. International Conference on Management of Manufacturing Systems (Conference 3rd EAI 2018), Dubrovnik, 2018. https://doi.org/10.4108/eai.6-11-2018.2279681 Search in Google Scholar

Wilk-Jakubowski J. Predicting Satellite System Signal Degradation due to Rain in the Frequency Range of 1 to 25 GHz. Pol. J. Environ. Stud. 2018:27(1):391–396. https://doi.org/10.15244/pjoes/73906 Search in Google Scholar

Azarenko O., Honcharenko Y., Divizinyuk M., Mirnenko V., Strilets V., Wilk-Jakubowski J. L. Influence of anthropogenic factors on the solution of applied problems of recording language information in the open area. Journal of Scientific Papers: Social Development and Security 2022:12(3):135–143. https://doi.org/10.33445/sds.2022.12.3.12 Search in Google Scholar

Wilk-Jakubowski J. Total Signal Degradation of Polish 26-50 GHz Satellite Systems Due to Rain. Pol. J. Environ. Stud. 2018:27(1):397–402. https://doi.org/10.15244/pjoes/75179 Search in Google Scholar

Azarenko O., Honcharenko Y., Divizinyuk M., Mirnenko V., Strilets V., Wilk-Jakubowski J. L. The influence of air environment properties on the solution of applied problems of capturing speech information in the open terrain. Journal of Scientific Papers: Social Development and Security 2022:12(2):64–77. https://doi.org/10.33445/sds.2022.12.2.6 Search in Google Scholar

Wilk-Jakubowski J. Measuring Rain Rates Exceeding the Polish Average by 0.01%. Pol. J. Environ. Stud. 2018:27(1):383–390. https://doi.org/10.15244/pjoes/73907 Search in Google Scholar

Wilk-Jakubowski J. Information systems engineering using VSAT networks. Yugoslav Journal of Operations Research 2021:31(3):409–428. https://yujor.fon.bg.ac.rs/index.php/yujor/article/view/833/785 Search in Google Scholar

Feofilovs M., Romagnoli F. Assessment of Urban Resilience to Natural Disasters with a System Dynamics Tool: Case Study of Latvian Municipality. Environmental and Climate Technologies 2020:24(3):249–264. https://doi.org/10.2478/rtuect-2020-0101 Search in Google Scholar

Pagano A., Romagnoli F., Vannucci E. Insurance against Natural Hazards: Critical Elements on the Risk Premium Evaluation in the Italian Context. Environmental and Climate Technologies 2020:24(3):373–386. https://doi.org/10.2478/rtuect-2020-0110 Search in Google Scholar

Deniziak S., Płaza M., Arcab, Ł. Approach for Designing Real-Time IoT Systems. Approach for Designing Real-Time IoT Systems. Electronics 2022:11(24):4120. https://doi.org/10.3390/electronics11244120 Search in Google Scholar

Szcześniak A., Szcześniak Z., Cedro L. Synthesis of Pneumatic Systems in the Control of the Transport Line of Rolling Elements. Acta Mechanica et Automatica 2023:17(2):254–262. https://doi.org/10.2478/ama-2023-0029 Search in Google Scholar

Poczęta K., Płaza M., Michno T., Krechowicz M., Zawadzki M. A multi-label text message classification method designed for applications in call/contact centre systems. Applied Soft Computing 2023:145:110562. https://doi.org/10.1016/j.asoc.2023.110562 Search in Google Scholar

Pronobis M. Modernization of power boilers. Warszawa: Wydawnictwo Naukowo-Techniczne, 2002. Search in Google Scholar

Jędrusyna A., Noga A. Wykorzystanie generatora fal infradźwiękowych dużej mocy do oczyszczania z osadów powierzchni grzewczych kotłów energetycznych. (Using a high-power infrasound wave generator to clean deposits from the heating surfaces of power boilers). Piece Przem. & Kotły 2012:11(12):30–37. [Online]. [Accessed 20.12.2022]. Available: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-ef5dde46-0642-445da573-1b7e2fa266e4 (In Polish). Search in Google Scholar

Noga A. Przegląd obecnego stanu wiedzy z zakresu techniki infradźwiękowej i możliwości wykorzystania fal akustycznych do oczyszczania urządzeń energetycznych. (An overview of the current state of knowledge in the field of infrasound technology and the possibility of using acoustic waves to clean energy devices). Zeszyty Energetyczne 2014:1:225–234 [Online]. [Accessed 20.12.2022]. Available: http://ze.pwr.edu.pl/wp-content/uploads/2018/03/ZE_1_23_Noga.pdf (In Polish) Search in Google Scholar

Niegodajew P., Łukasiak K., Radomiak H., Musiał D., Zajemska M., Poskart A., Gruszka K. Application of acoustic oscillations in quenching of gas burner flame. Combustion and Flame 2018:194:245–249. https://doi.org/10.1016/j.combustflame.2018.05.007 Search in Google Scholar

Niegodajew P., Gruszka K., Gnatowska R., Šofer M. Application of acoustic oscillations in flame extinction in a presence of obstacle. XXIII Fluid Mechanics Conference (KKMP 2018). IOP Conf. Series Journal of Physics (Conf. Series 1101), Zawiercie, 2018. https://doi.org/10.1088/1742-6596/1101/1/012023 Search in Google Scholar

Krumov K. Ucheni ot Blgarija I Polsha sjzdadoha umen pozharogasitelj (Scientists from Bulgaria and Poland have created a smart fire extinguisher) [Online]. [Accessed 05.07.2020]. Available: https://www.monitor.bg/bg/a/view/ucheni-otbylgarija-i-polsha-syzdadoha-umen-pojarogasitel-206283 (in Bulgarian). Search in Google Scholar

Zdziebłowski Sz. Kielce/Akustyczna gaśnica powstała na Politechnice Świętokrzyskiej (Kielce/Acoustic fire extinguisher was built at the Kielce University of Technology) [Online]. [Accessed 05.07.2020]. Available: https://naukawpolsce.pl/aktualnosci/news%2C82488%2Ckielce-akustyczna-gasnica-powstala-na-politechniceswietokrzyskiej.html (in Polish) Search in Google Scholar

Błoński M. Polski inżynier stworzył gaśnicę tłumiącą pożar za pomocą... dźwięku (A Polish engineer has created a fire extinguisher that suppresses fire using... sound) [Online]. [Accessed 05.07.2020]. Available: https://kopalniawiedzy.pl/gasnica-dzwiek-Politechnika-Swietokrzyska,32142 (in Polish) Search in Google Scholar

Kapiszewski J. Pali się, podkręć basy [EUREKA DGP] (Fire, turn up the bass [EUREKA DGP]) [Online]. [Accessed 05.07.2020]. Available: https://biznes.gazetaprawna.pl/artykuly/1475298,glosniki-ktore-moga-gasic-pozary.html (in Polish) Search in Google Scholar

Wawainfo. Polak wynalazł rewolucyjne urządzenie. Gaszenie pożarów bez wody. Będzie przełom? (A Pole has invented a revolutionary device. Putting out fires without water. Will there be a breakthrough?) [Online]. [Accessed 05.07.2020]. Available: https://wawainfo.pl/jacek-wilk-jakubowski-jb-wmd-050620-gaszenie-pozaru-dzwiekiem (in Polish) Search in Google Scholar

Maj K. Czy można zgasić pożar dźwiękiem? Polacy udowodnili, że tak (Is it possible to extinguish a fire with sound? Poles have proven that it is) [Online]. [Accessed 05.07.2020]. Available: https://dobrewiadomosci.net.pl/42215-czymozna-zgasic-pozar-dzwiekiem-polacy-udowodnili-ze-tak (in Polish) Search in Google Scholar

Chiny Tech. Polski inżynier stworzył gaśnicę akustyczną (Polish engineer created an acoustic fire extinguisher) [Online]. [Accessed 05.07.2020]. Available: https://chinytech.pl/2020/06/polski-inzynier-stworzyl-gasnice-akustyczna (in Polish) Search in Google Scholar

Janowski S. Polski wynalazek zrewolucjonizuje pracę strażaków. Będą gasić pożary dźwiękiem (A Polish invention will revolutionize the work of firefighters. They will extinguish fires with sound) [Online]. [Accessed 20.03.2022]. Available: https://techgame.pl/wynalazek-110620-sj-akustyczna-gasnica-pozar (in Polish) Search in Google Scholar

McKinney D. J., Dunn-Rankin D. Acoustically driven extinction in a droplet stream flame. Combustion Science and Technology 2007:161:27–48. https://doi.org/10.1080/00102200008935810 Search in Google Scholar

Stawczyk P., Wilk-Jakubowski J. Non-invasive attempts to extinguish flames with the use of high-power acoustic extinguisher. Open Engineering 2021:11(1):349–355. https://doi.org/10.1515/eng-2021-0037 Search in Google Scholar

Wilk-Jakubowski J. Analysis of Flame Suppression Capabilities Using Low-Frequency Acoustic Waves and Frequency Sweeping Techniques. Symmetry 2021:13(7):1299. https://doi.org/10.3390/sym13071299 Search in Google Scholar

Khrystoslavenko O., Grubliauskas R. Experimental Studies of the Sound Scattering Coefficient of the Diffuser in the Reverberation Chamber. Environmental and Climate Technologies 2023:27(1):464–475. https://doi.org/10.2478/rtuect-2023-0034 Search in Google Scholar

Radomiak H., Mazur M., Zajemska M., Musiał D. Gaszenie płomienia dyfuzyjnego przy pomocy fal akustycznych. (Extinguishing a diffusion flame using acoustic waves). Bezpieczeństwo i Technika Pożarnicza 2015:40(4):29–38. https://doi.org/10.12845/bitp.40.4.2015.2 Search in Google Scholar

Węsierski T., Wilczkowski S., Radomiak H. Wygaszanie procesu spalania przy pomocy fal akustycznych. (Extinguishing the combustion process using acoustic waves). Bezpieczeństwo i Technika Pożarnicza 2013:30(2):59–64. Search in Google Scholar

Friedman A. N., Stoliarov S.I. Acoustic extinction of laminar line-flames. Fire Safety Journal 2017:93:102–113. https://doi.org/10.1016/j.firesaf.2017.09.002 Search in Google Scholar

Kornilov V. N., Schreel K., De Goey L. P. H. Experimental assessment of the acoustic response of laminar premixed Bunsen flames. Proceedings of the Combustion Institute 2007:31(1):1239–1246. https://doi.org/10.1016/j.proci.2006.07.079 Search in Google Scholar

Karimi N. Response of a conical, laminar premixed flame to low amplitude acoustic forcing – a comparison between experiment and kinematic theories. Energy 2014:78:490–500. https://doi.org/10.1016/j.energy.2014.10.036 Search in Google Scholar

Magina N., Steele W., Emerson B., Lieuwen T. Spatio-temporal evolution of har-monic disturbances on laminar, nonpremixed flames: Measurements and analysis. Combustion and Flame 2016:180:262–75. https://doi.org/10.1016/j.combustflame.2016.09.001 Search in Google Scholar

Kashinath K., Waugh I. C., Juniper M. P. Nonlinear self-excited thermoacoustic oscillations of a ducted premixed flame: bifurcations and routes to chaos. Journal of Fluid Mechanics 2014:761:399–430. https://doi.org/10.1017/jfm.2014.601 Search in Google Scholar

Kozlov V. V., Grek G. R., Korobeinichev O. P., Litvinenko Y. A., Shmakov A. G. Combustion of hydrogen in round and plane microjets in transverse acoustic field at small Reynolds numbers as compared to propane combustion in the same conditions. International Journal of Hydrogen Energy 2016:41(44):20231–20239. https://doi.org/10.1016/j.ijhydene.2016.07.276 Search in Google Scholar

Chen L. W., Zhang Y. Experimental observation of the nonlinear coupling of flame flow and acoustic wave. Flow Measurement and Instrumentation 2015:46(PA):12–17. https://doi.org/10.1016/j.flowmeasinst.2015.09.001 Search in Google Scholar

Im H. G., Law C. K., Axelbaum R. L. Opening of the Burke-Schumann Flame Tip and the Effects of Curvature on Diffusion Flame Extinction. Proceedings of the Combustion Institute 1990:23(1):551–558. https://doi.org/10.1016/S0082-0784(06)80302-4 Search in Google Scholar

Marek M. Wykorzystanie ekonometrycznego modelu klasycznej funkcji regresji liniowej do przeprowadzenia analiz ilościowych w naukach ekonomicznych. Rola informatyki w naukach ekonomicznych i społecznych. Innowacje i implikacje interdyscyplinarne. (Using the econometric model of the classical linear regression function to conduct quantitative analyzes in economic sciences. The role of computer science in economics and social sciences. Innovations and interdisciplinary implications). Kielce: Wydawnictwo Wyższej Szkoły Handlowej im. Bolesława Markowskiego w Kielcach, 2013. (In Polish). Search in Google Scholar

Marek M. Bayesian Regression Model Estimation: A Road Safety Aspect. In: Ahmed M.B., Boudhir A.A., Karaș İ.R., Jain V., Mellouli S. (Eds.) Innovations in Smart Cities Applications Volume 5. SCA 2021. Lecture Notes in Networks and Systems 2022:393. https://doi.org/10.1007/978-3-030-94191-8_13 Search in Google Scholar

Marek M. Aspects of Road Safety: A Case of Education by Research – Analysis of Parameters Affecting Accident. Presented at The Education and Research in the Information Society Conference (ERIS), Plovdiv, 2021 [Online]. [Accessed 10.12.2022]. Available: https://ceur-ws.org/Vol-3061/ERIS_2021-art07(reg).pdf Search in Google Scholar

Strelets V. V., Loboichenko V. M., Leonova N. A., Shevchenko R. I., Strelets V. M., Pruskyi A. V., Avramenko O. V. Comparative assessment of environmental parameters of foaming agents based on synthetic hydrocarbon used for extinguishing the fires of oil and petroleum products. SOCAR Proceedings 2021:2:1–10. https://doi.org/10.5510/OGP2021SI200537 Search in Google Scholar

Rabajczyk A., Zielecka M., Gniazdowska J. Application of Nanotechnology in Extinguishing Agents. Materials 2022:15(24):8876. https://doi.org/10.3390/ma15248876 Search in Google Scholar

Yılmaz-Atay H, Wilk-Jakubowski J.L. A Review of Environmentally Friendly Approaches in Fire Extinguishing: From Chemical Sciences to Innovations in Electrical Engineering. Polymers 2022:14(6):1224. https://doi.org/10.3390/polym14061224 Search in Google Scholar

Wilk-Jakubowski J. L, Loboichenko V., Wilk-Jakubowski G., Yılmaz-Atay H., Harabin R., Ciosmak J., Ivanov S., Stankov S. Acoustic firefighting method on the basis of European research: a review. Akustika 2023:46(46):31–5. https://doi.org/10.36336/akustika20234631 Search in Google Scholar

Vovchuk T. S., Wilk-Jakubowski J. Ł., Telelim V. M., Loboichenko V. M., Shevchenko R. I., Shevchenko O. S., Tregub N. S. Investigation of the use of the acoustic effect in extinguishing fires of oil and petroleum products. SOCAR Proceedings 2021:2:24–31. https://doi.org/10.5510/OGP2021SI200602 Search in Google Scholar

Shevchenko R. I., et al. Review of up-to-date approaches for extinguishing oil and petroleum products. SOCAR Proceedings 2021:SI1:169–174. https://doi.org/10.5510/ogp2021si100519 Search in Google Scholar

Yi E. Y., Lee E, Bae M.J. A study on the directionality of sound fire extinguisher in electric fire. Convergence Research Letter of Multimedia Services Convergent with Art, Humanities, and Sociology 2017:3(4):1449–1452. Search in Google Scholar

Tiwari R. G., Agarwal A. K., Jindal R. K., Singh A. Experimental Evaluation of Boosting Algorithms for Fuel Flame Extinguishment with Acoustic Wave. Presented at International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT), Sakheer, 2022. https://doi.org/10.1109/3ICT56508.2022.9990779 Search in Google Scholar

Taspinar Y.S., Koklu M., Altin M. Classification of flame extinction based on acoustic oscillations using artificial intelligence methods. Case Studies in Thermal Engineering 2021:28:101561. https://doi.org/10.1016/j.csite.2021.101561 Search in Google Scholar

Li Q., et al. Numerical study on effects of pipeline geometric parameters on release characteristics of gas extinguishing agent. Symmetry 2021:13(10):1766. https://doi.org/10.3390/sym13101766 Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other