Cite

1. S. Ghosh, S. Das, R. Mondal, S. Abdullah, S. Sultana, S. Singh, A. Sehgal and T. Behl, A review on the effect of COVID-19 in type 2 asthma and its management, Int. Immunopharmacol. 91 (2021) Article ID 107309 (13 pages); https://doi.org/10.1016/j.intimp.2020.107309777209133385710 Search in Google Scholar

2. D. Wang, B. Hu, C. Hu, F. Zhu, X. Liu, J. Zhang, B. Wang, H. Xiang, Z. Cheng, Y. Xiong, Y. Zhao, Y. Li, X. Wang and Z. Peng, Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China, JAMA 323(11) (2020) 1061–1069; https://doi.org/10.1001/jama.2020.1585704288132031570 Search in Google Scholar

3. O. I. Oyeniran and T. Chia, Novel coronavirus disease 2019 (COVID-19) outbreak in Nigeria: how effective are government interventions?, Ethics Med. Public Health 14 (2020) Article ID 100515 (2 pages); https://doi.org/10.1016/j.jemep.2020.100515718861932352023 Search in Google Scholar

4. Q. Li, X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong, R. Ren, K. S. M. Leung, E. H. Y. Lau, J. Y. Wong, X. Xing, N. Xiang, Y. Wu, C. Li, Q. Chen, D. Li, T. Liu, J. Zhao, M. Liu, W. Tu, C. Chen, L. Jin, R. Yang, Q. Wang, S. Zhou, R. Wang, H. Liu, Y. Luo, Y. Liu, G. Shao, H. Li, Z. Tao, Y. Yang, Z. Deng, B. Liu, Z. Ma, Y. Zhang, G. Shi, T. T. Y. Lam, J. T. Wu, G. F. Gao, B. J. Cowling, B. Yang, G. M. Leung and Z. Feng, Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia, N. Engl. J. Med. 382 (2020) 1199–1207; https://doi.org/10.1056/NEJMoa2001316712148431995857 Search in Google Scholar

5. J. Hartmann-Boyce, J. Gunnell, J. Drake, A. Otunla, J. Suklan, E. Schofield, J. Kinton, M. Inada-Kim, F. D. R. Hobbs and P. Dennison, Asthma and COVID-19: review of evidence on risks and management considerations, BMJ Evid-Based Med. 26(4) (2021) Article ID 195 (8 pages); https://doi.org/10.1136/bmjebm-2020-11150632883705 Search in Google Scholar

6. I. B. Ahluwalia, M. Myers and J. E. Cohen, COVID-19 pandemic: an opportunity for tobacco use cessation, Lancet Pub. Health 5 (2020) e577 (1 page); https://doi.org/10.1016/S2468-2667(20)30236-X758821433120038 Search in Google Scholar

7. J. W. Mims, Asthma: definitions and pathophysiology, Int. Forum Allergy Rhinol. 5 (2015) S2–S6; https://doi.org/10.1002/alr.2160926335832 Search in Google Scholar

8. J. A. Krishnan, R. F. Lemanske, G. J. Canino, K. S. Elward, M. Kattan, E. C. Matsui, H. Mitchell, E. R. Sutherland and M. Minnicozzi, Asthma outcomes: Symptoms, J. Allergy Clin. Immunol. 129(3) (2012) S124–S135; https://doi.org/10.1016/j.jaci.2011.12.981426302922386505 Search in Google Scholar

9. J. Bousquet, E. Mantzouranis, A. A. Cruz, N. Aït-Khaled, C. E. Baena-Cagnani, E. R. Bleecker, C. E. Brightling, P. Burney, A. Bush, W. W. Busse, T. B. Casale, M. Chan-Yeung, R. Chen, B. Chowdhury, K. F. Chung, R. Dahl, J. M. Drazen, L. M. Fabbri, S. T. Holgate, F. Kauffmann, T. Haahtela, N. Khaltaev, J. P. Kiley, M. R. Masjedi, Y. Mohammad, P. O’Byrne, M. R. Partridge, K. F. Rabe, A. Togias, C. van Weel, S. Wenzel, N. Zhong and T. Zuberbier, Uniform definition of asthma severity, control, and exacerbations: Document presented for the World Health Organization consultation on severe asthma, J. Allergy Clin. Immunol. 126(5) (2010) 926–938; https://doi.org/10.1016/j.jaci.2010.07.01920926125 Search in Google Scholar

10. F. T. Ishmael, The inflammatory response in the pathogenesis of asthma, J. Am. Osteopath. Assoc. 111(11, Suppl. 7) (2011) S11-S17; https://doi.org/10.7556/jaoa.2011.20014 Search in Google Scholar

11. C. J. Oliphant, J. L. Barlow and A. N. J. McKenzie, Insights into the initiation of type 2 immune responses, Immunology 134(4) (2011) 378–385; https://doi.org/10.1111/j.1365-2567.2011.03499.x323079222044021 Search in Google Scholar

12. M. Morais-Almeida and J. Bousquet, COVID-19 and asthma: To have or not to have T2 inflammation makes a difference?, Pulmonology 26(5) (2020) 261–263; https://doi.org/10.1016/j.pulmoe.2020.05.003723673132466999 Search in Google Scholar

13. E. M. Abrams, G. W. ‘t Jong and C. L. Yang, Asthma and COVID-19, CMAJ 192(20) (2020) E551; https://doi.org/10.1503/cmaj.200617724188332332038 Search in Google Scholar

14. T. Tabassum, A. Rahman, Y. Araf, Md. A. Ullah and M. J. Hosen, Management of asthma patients during the COVID-19 pandemic: pathophysiological considerations to address the challenges, Beni-Suef Univ. J. Basic Appl. Sci. 11(20) (2022) Article ID 20 (14 pages); https://doi.org/10.1186/s43088-022-00204-4881764535155689 Search in Google Scholar

15. K. E. J. Philip, S. Buttery, P. Williams, B. Vijayakumar, J. Tonkin, A. Cumella, L. Renwick, L. Ogden, J. K. Quint, S. L. Johnston, M. I. Polkey and N. S. Hopkinson, Impact of COVID-19 on people with asthma: a mixed methods analysis from a UK wide survey, BMJ Open Resp. Res. 9 (2022) e001056 (9 pages); https://doi.org/10.1136/bmjresp-2021-001056876213435027428 Search in Google Scholar

16. J. Darveaux and W. W. Busse, Biologics in asthma – The next step toward personalized treatment, J. Allergy Clin. Immunol.: In Practice 3(2) (2015) 152–160; https://doi.org/10.1016/j.jaip.2014.09.014477450925754716 Search in Google Scholar

17. S. Atal and Z. Fatima, IL-6 Inhibitors in the treatment of serious COVID-19: A promising therapy?, Pharm. Med. 34 (2020) 223–231; https://doi.org/10.1007/s40290-020-00342-z729293632535732 Search in Google Scholar

18. U. Agrawal, R. Raju and Z. F. Udwadia, Favipiravir: A new and emerging antiviral option in COVID-19, Med. J. Armed Forces India 76(4) (2020) 370–376; https://doi.org/10.1016/j.mjafi.2020.08.004746706732895599 Search in Google Scholar

19. S. Sharma, S. Basu, N. P. Shetti and T. M. Aminabhavi, Current treatment protocol for COVID-19 in India, Sensors Int. 1 (2020) Article ID 100013 (3 pages); https://doi.org/10.1016/j.sintl.2020.100013783270534766036 Search in Google Scholar

20. A. Parasher, COVID-19: Current understanding of its pathophysiology, clinical presentation and treatment, Postgrad. Med. J. 97 (1147) (2021) 312–320; https://doi.org/10.1136/postgradmedj-2020-13857732978337 Search in Google Scholar

21. V. Bilano, S. Gilmour, T. Moffiet, E. T. d’Espaignet, G. A. Stevens, A. Commar, F. Tuyl, I. Hudson and K. Shibuya, Global trends and projections for tobacco use, 1990–2025: an analysis of smoking indicators from the WHO comprehensive information systems for tobacco control, Lancet 385(9972) (2015) 966–976; https://doi.org/10.1016/s0140-6736(15)60264-1 Search in Google Scholar

22. R. Talhout, T. Schulz, E. Florek, J. Van Benthem, P. Wester and A. Opperhuizen, Hazardous compounds in tobacco smoke, Int. J. Environ. Res. Public Health 8 (2011) 613–628; https://doi.org/10.3390/ijerph8020613308448221556207 Search in Google Scholar

23. M. Ezzati and A. D. Lopez, Estimates of global mortality attributable to smoking in 2000, Lancet 362(9387) (2003) 847–852; https://doi.org/10.1016/s0140-6736(03)14338-313678970 Search in Google Scholar

24. S. J. Brake, K. Barnsley, W. Lu, K. D. McAlinden, M. S. Eapen and S. S. Sohal, Smoking upregulates angiotensin-converting enzyme-2 receptor: A potential adhesion site for novel coronavirus SARSCoV-2 (Covid-19), J. Clin. Med. 9(3) (2020) Article ID 841 (7 pages); https://doi.org/10.3390/jcm9030841714151732244852 Search in Google Scholar

25. M. D. Shastri, S. D. Shukla, W. C. Chong, Rajendra KC, K. Dua, R. P. Patel, G. M. Peterson and R. F. O’Toole, Smoking and COVID-19: What we know so far, Resp. Med. 176 (2021) Article ID 106237 (7 pages); https://doi.org/10.1016/j.rmed.2020.106237767498233246296 Search in Google Scholar

26. N. M. Siafakas, P. Vermeire, N. B. Pride, P. Paoletti, J. Gibson, P. Howard, J. C. Yernault, M. Decramer, T. Higenbottam, D. S. Postma and J. Rees, Optimal assessment and management of chronic obstructive pulmonary disease (COPD), Eur. Resp. J. 8(8) (1995) 1398–1420; https://doi.org/10.1183/09031936.95.080813987489808 Search in Google Scholar

27. D. Milner, The physiological effects of smoking on the respiratory system, Nurs. Times 100 (2004) 56–59. Search in Google Scholar

28. J. Almirall, I. Bolibar, M. Serra-Prat, J. Roig, I. Hospital, E. Carandell, M. Agusti, P. Ayuso, A. Estela and A. Torres, New evidence of risk factors for community-acquired pneumonia: a population-based study, Eur. Resp. J. 31(6) (2008) 1274–1284; https://doi.org/10.1183/09031936.0009580718216057 Search in Google Scholar

29. H. Müllerova, C. Chigbo, G. W. Hagan, M. A. Woodhead, M. Miravitlles, K. J. Davis and J. A. Wedzicha, The natural history of community-acquired pneumonia in COPD patients: A population database analysis, Resp. Med. 106(8) (2012) 1124–1133; https://doi.org/10.1016/j.rmed.2012.04.00822621820 Search in Google Scholar

30. S. Cohen, D. A. Tyrrell, M. A. Russell, M. J. Jarvis and A. P. Smith, Smoking, alcohol consumption, and susceptibility to the common cold, Am. J. Public Health 83(9) (1993) 1277–1283; https://doi.org/10.2105/ajph.83.9.127716949908363004 Search in Google Scholar

31. J. D. Kark, M. Lebiush and L. Rannon, Cigarette smoking as a risk factor for epidemic A(H1N1) influenza in young men, N. Engl. J. Med. 307 (1982) 1042–1046; https://doi.org/10.1056/nejm198210213071702 Search in Google Scholar

32. Z. Zhou, P. Chen and H. Peng, Are healthy smokers really healthy?, Tob. Ind. Dis. 14 (2016) Article ID 35 (12 pages); https://doi.org/10.1186/s12971-016-0101-z511128827891067 Search in Google Scholar

33. L. Arcavi and N. L. Benowitz, Cigarette smoking and infection, Arch. Intern. Med. 164(20) (2004) 2206–2216; https://doi.org/10.1001/archinte.164.20.220615534156 Search in Google Scholar

34. J.-E. Park, S. Jung, A. Kim and J.-E. Park, MERS transmission and risk factors: a systematic review, BMC Public Health 18 (2018) Article ID 574 (15 pages); https://doi.org/10.1186/s12889-018-5484-8593077829716568 Search in Google Scholar

35. H.-S. Nam, J. W. Park, M. Ki, M.-Y. Yeon, J. Kim and S. W. Kim, High fatality rates and associated factors in two hospital outbreaks of MERS in Daejeon, the Republic of Korea, Int. J. Infect. Dis. 58 (2017) 37–42; https://doi.org/10.1016/j.ijid.2017.02.008711048028223175 Search in Google Scholar

36. C. Sherman, Health effects of cigarette smoking, Clin. Chest Med. 12(4) (1991) 643–658; https://doi.org/10.1016/S0272-5231(21)00814-5 Search in Google Scholar

37. K. Palipudi, S. A. Rizwan, D. N. Sinha, L. J. Andes, R. Amarchand, A. Krishnan and S. Asma Prevalence and sociodemographic determinants of tobacco use in four countries of the World Health Organization: South-East Asia region: findings from the global adult tobacco survey, Indian J. Cancer 51 (Suppl. 1) (2014) S24–S32; https://doi.org/10.4103/0019-509X.14744625526244 Search in Google Scholar

38. R. M. Benjamin, Exposure to tobacco smoke causes immediate damage: A report of the surgeon general, Public Health Rep. 126(2) (2011) 158–159; https://doi.org/10.1177/003335491112600202305602421387941 Search in Google Scholar

39. W.-J. Guan, Z.-Y. Ni, Y. Hu, W.-H. Liang, C.-Q. Ou, J.-X. He, L. Liu, H. Shan, C.-L. Lei, D. S. C. Hui, B. Du, L.-J. Li, G. Zeng, K.-Y. Yuen, R.-C. Chen, C.-L. Tang, T. Wang, P.-Y. Chen, J. Xiang, S.-Y. Li, J.-L. Wang, Z.-J. Liang, Y.-X. Peng, L. Wei, Y. Liu, Y.-H. Hu, P. Peng, J.-M. Wang, J.-Y. Liu, Z. Chen, G. Li, Z.-J. Zheng, S.-Q. Qiu, J. Luo, C.-J. Ye, S.-Y. Zhu and N.-S. Zhong (for the China Medical Treatment Expert Group for Covid-19), Clinical characteristics of coronavirus disease 2019 in China, N. Engl. J. Med. 382 (2020) 1708–1720; https://doi.org/10.1056/nejmoa2002032 Search in Google Scholar

40. K. Vapalahti, A.-M. Virtala, A. Vaheri and O. Vapalahti, Case-control study on Puumala virus infection: smoking is a risk factor, Epidemiol. Infect. 138(4) (2009) 576–584; https://doi.org/10.1017/s095026880999077x Search in Google Scholar

41. A. K. Boutou, G. Pitsiou, T. Kontakiotis and I. Kioumis, Nicotine treatment and smoking cessation in the era of COVID-19 pandemic: an interesting alliance, ERJ Open Res. 6(3) (2020) Article ID 00306-2020 (3 pages); https://doi.org/10.1183/23120541.00306-2020741881932802824 Search in Google Scholar

42. H. A. Tindle, P. A. Newhouse and M. S. Freiberg, Beyond smoking cessation: Investigating medicinal nicotine to prevent and treat COVID-19, Nicotine Tob. Res. 22(9) (2020) 1669–1670; https://doi.org/10.1093/ntr/ntaa077723914132383751 Search in Google Scholar

43. S. J. Brake, K. Barnsley, W. Lu, K. D. McAlinden, M. S. Eapen and S. S. Sohal, Smoking upregulates angiotensin-converting enzyme-2 receptor: A potential adhesion site for novel coronavirus SARSCoV-2 (Covid-19), J. Clin. Med. 9(3) (2020) Article ID 841 (7 pages); https://doi.org/10.3390/jcm9030841714151732244852 Search in Google Scholar

44. K. P. F. Chan, T. F. Ma, W. C. Kwok, J. K. C. Leung, K. Y. Chiang, J. C. M. Ho, D. C. L. Lam, T. C. C. Tam, M. S. M. Ip and P. L. Ho, Significant reduction in hospital admissions for acute exacerbation of chronic obstructive pulmonary disease in Hong Kong during coronavirus disease 2019 pandemic, Resp. Med. 171 (2020) Article ID 106085 (6 pages); https://doi.org/10.1016/j.rmed.2020.106085735438232917356 Search in Google Scholar

45. M. A. Crackower, R. Sarao, G. Y. Oudit, C. Yagil, I. Kozieradzki, S. E. Scanga, A. J. Oliveira-dos-Santos, J. da Costa, L. Zhang, Y. Pei, J. Scholey, C. M. Ferrario, A. S. Manoukian, M. C. Chappell, P. H. Backx, Y. Yagil and J. M. Penninger, Angiotensin-converting enzyme 2 is an essential regulator of heart function, Nature 417 (2002) 822–828; https://doi.org/10.1038/nature0078612075344 Search in Google Scholar

46. D. Harmer, M. Gilbert, R. Borman and K. L. Clark, Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme, FEBS Lett. 532(1–2) (2002) 107–110; https://doi.org/10.1016/s0014-5793(02)03640-212459472 Search in Google Scholar

47. I. Hamming, W. Timens, M. Bulthuis, A. Lely, G. Navis and H. van Goor, Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis, J. Pathol. 203(2) (2004) 631–637; https://doi.org/10.1002/path.1570716772015141377 Search in Google Scholar

48. S. D. Crowley, S. B. Gurley, M. I. Oliverio, A. K. Pazmino, R. Griffiths, P. J. Flannery, R. F. Spurney, H.-S. Kim, O. Smithies, T. H. Le and T. M. Coffman, Distinct roles for the kidney and systemic tissues in blood pressure regulation by the renin-angiotensin system, J. Clin. Invest. 115(4) (2005) 1092–1099; https://doi.org/10.1172/JCI23378107041715841186 Search in Google Scholar

49. C. Tikellis and M. C. Thomas, Angiotensin-converting enzyme 2 (ACE2) is a key modulator of the renin angiotensin system in health and disease, Int. J. Pept. 2012 (2012) Article ID 256294 (8 pages); https://doi.org/10.1155/2012/256294332129522536270 Search in Google Scholar

50. B. Coutard, C. Valle, X. de Lamballerie, B. Canard, N. G. Seidah and E. Decroly, The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade, Antiviral Res. 176 (2020) Article ID 104742 (5 pages); https://doi.org/10.1016/j.antiviral.2020.104742711409432057769 Search in Google Scholar

51. K. E. Follis, J. York and J. H. Nunberg, Furin cleavage of the SARS coronavirus spike glycoprotein enhances cell–cell fusion but does not affect virion entry, Virology 350(2) (2006) 358–369; https://doi.org/10.1016/j.virol.2006.02.003711178016519916 Search in Google Scholar

52. F. Li, Structure of SARS coronavirus spike receptor-binding domain complexed with receptor, Science 309(5742) (2005) 1864–1868; https://doi.org/10.1126/science.111648016166518 Search in Google Scholar

53. M. Saadat, No significant correlation between ACE Ins/Del genetic polymorphism and COVID-19 infection, Clin. Chem. Lab. Med. 58(7) (2020) 1127–1128; https://doi.org/10.1515/cclm-2020-057732386188 Search in Google Scholar

54. D. Wrapp, N. Wang, K. S. Corbett, J. A. Goldsmith, C.-L. Hsieh, O. Abiona, B. S. Graham and J. S. McLellan, Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation, Science 367(6483) (2020) 1260–1263; https://doi.org/10.1126/science.abb2507716463732075877 Search in Google Scholar

55. J. M. Leung, C. X. Yang, A. Tam, T. Shaipanich, T.-L. Hackett, G. K. Singhera, D. R. Dorscheid and D. D. Sin, ACE-2 expression in the small airway epithelia of smokers and COPD patients: Implications for COVID-19, Eur. Respir. J. 55(5) (2020) Article ID 2000688 (5 pages); https://doi.org/10.1183/13993003.00688-2020714426332269089 Search in Google Scholar

56. J. C. Smith, E. L. Sausville, V. Girish, M. L. Yuan, K. M. John and J. M. Sheltzer, Cigarette smoke exposure and inflammatory signaling increase the expression of the SARS-CoV-2 receptor ACE2 in the respiratory tract, Devel. Cell 53 (2020) 514–529; bioRxiv preprint posted April 26, 2020; https://doi.org/10.1101/2020.03.28.013672 Search in Google Scholar

57. J. Qi, Y. Zhou, J. Hua, L. Zhang, J. Bian, B. Liu, Z. Zhao and S. Jin, The scRNA-seq expression profiling of the receptor ACE2 and the cellular protease TMPRSS2 reveals human organs susceptible to SARS-CoV-2 infection, Int. J. Environ. Res. Public Health 18(1) (2021) Article ID 284 (17 pages); https://doi.org/10.3390/ijerph18010284779491333401657 Search in Google Scholar

eISSN:
1846-9558
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Pharmacy, other