Open Access

Spectroscopic Study of Metal (II) Complex of Sulphamethazine with 1,10 Phenanthroline


Cite

[1] S. Nair and S. Rugupathy, “Studies on Cu (II) Mixed Ligand complexes containing a Supha Drug and some Enzyme Constituents”, Journal of Coordination Chemistry, 6 (2); 361-372, 2019.10.1080/00958970903398069Search in Google Scholar

[2] P.A. Ajibade, and N.H. Zulu, “Metal Complexes of Diisopropylthiourea: Synthesis, Characterization and Antibacterial Studies”, International Journal of Molecular Sciences, Vol. 12, Pp. 7186-7198, 2018.Search in Google Scholar

[3] J.A. Obaleye, “Marriageology of Chemical Nature: Drug – Metal Complexes Perspective”, The Seventy – fifth Inaugural Lecture University of Ilorin, 2004.Search in Google Scholar

[4] G. Gutierrez, J. Alzuet, M.I. Borras, F. Gonzalez, A. Sanz, “Castinneiras”, Polyhedron, 20, Pp. 703, 2011.Search in Google Scholar

[5] G.G. Mohamed, A.M. Mohamed and G. Elkareem, “Synthesis, Characterization and Thermal Studies on Metal Complexes of New Azo compound derived from Sulfa druds”, Spectrochmica Acta Part A, Vol. 68, Pp. 1382 – 1387, 2017.Search in Google Scholar

[6] World Health Organization. “Malaria Report Estimated P. falciparium infection prevalence among children aged 2-10 years (API, annual parasite index)”, PIPR, P. Falciparium parasite rate, 2015.Search in Google Scholar

[7] World Health Organization. Malaria Fact sheet, 2017.Search in Google Scholar

[8] A.S. Kabeer, and A. Azeem, “Syntheis, Characterization and Antibacterial Activity of Imidazole derivatives of 1,10- phenanathroline and their complexes”, International Journal of Advanced Research in Chemical Science, Vol. 1, No. 8, Pp. 40 – 44, 2019.Search in Google Scholar

[9] B. Kpomah, E.D. Kpomah, and E.A. Enemose, “Activity of some metal complexes of 1,10-phenanthroline and thiosemicarbazone derivatives on Plasmodium bergei infected strains of mice”, Journal of Basic and Applied Chemistry, 36, Pp. 13 – 23, 2018b.Search in Google Scholar

[10] T. Azar, K. Safoura, R. Arezoo, and Z. Sedigheh, “Synthesis and antiplasmodial activity of novel phenanthroline derivatives: An in vivo study”, Iran J Basic Med Sci., Vol. 21, No. 2, Pp. 202–211, 2018.Search in Google Scholar

[11] S.H. Kappe, A.M. Vaughan, J.A. Boddey, and A.F. Cowman, “That was then but this is now: malaria research in the time of an eradication agenda”, Science, 328, Pp. 862–866, 2019.10.1126/science.1184785Search in Google Scholar

[12] K. Beshir, C.J. Sutherland, I. Merinopoulos, N. Durrani, T. Leslie, M. Rowland, and L. Hallett, “Amodiaquine resistance in Plasmodium falciparum malaria in Afghanistan is associated with the pfcrt SVMNT allele at codons 72 to 76”, Antimicrob Agents Chemother, Vol. 54, Pp. 3714–3716, 2017.Search in Google Scholar

[13] L.L. Smrkovski, R.L. Buck, A.K. Alcantara, C.S. Rodriguez, and C.V. Uylangco, “Studies of resistance to chloroquine, quinine, amodiaquine and mefloquine among Philippine strains of Plasmodium falciparum”, Transa R. Soc. Trop. Med. Hyg., Vol. 79, Pp. 37–41, 2018.10.1016/0035-9203(85)90228-7Search in Google Scholar

[14] P. Lim, A.P. Alker, N. Khim, N.K. Shah, S. Incardona, S. Doung, P. Yi, D.M. Bouth, C. Bouchier, O.M. Puijalon, S.R. Meshnick, C. Wongsrichanalai, T. Fandeur, J. Le Bras, P. Ringwald, F. Ariey, “Pfmdr1 copy number and arteminisin derivatives combination therapy failure in falciparum malaria in Cambodia”, Malar J., Vol. 8, Pp. 11, 2019.10.1186/1475-2875-8-11Search in Google Scholar

[15] F.O. Ter Kuile, G. Dolan, F. Nosten, M.D. Edstein, C. Luxemburger, L. Phaipun, T. Chongsuphajaisiddhi, H.K. Webster, and N.J. White, “Halofantrine versus mefloquine in treatment of multidrug-resistant falciparum malaria”, Lancet, Vol. 341, Pp. 1044–1049, 1993.Search in Google Scholar

[16] L. Cui, and X.Z. Su, “Discovery, mechanisms of action and combination therapy of artemisinin”, Expert Rev Anti Infect Ther., Vol. 7, Pp. 999–1013, 2019.10.1586/eri.09.68Search in Google Scholar

[17] R. Hadanu, S. Mastjeh, J. Jumina, M. Mustofa, M.A. Widjayanti, and E.N. Sholikhah, “Synthesis and antiplasmodial activity testing of(1)- N -(4-methoxybenzyl)-1,10-phenanthrolinium bromide”, Indones J Chemistry, Vol. 7, Pp. 197–201, 2019.10.22146/ijc.21698Search in Google Scholar

[18] R. Hadanu, S. Matsjeh, M. Jumina, M.A. Widjayanti, and E.N. Sholikhah, “Synthesis and antiplasmodial activity testing of (1)- N -(4-methoxybenzyl)-1, 10-phenanthrolinium bromide compound”, Proceeding of ICCS, Pp. 24–26, 2017.Search in Google Scholar

[19] T.J. Egan, K.R. Koch, P.L. Swan, C. Clarkson, D.A. Van Schalkwyk, and P.J. Smith, “In vitro antimalarial activity of a series of cationic 2,2′-bipyridyl- and 1,10-phenanthrolineplatinum (II) benzoylthiourea complexes”, J. Med Chem., Vol. 47, Pp. 2926–2934, 2014.Search in Google Scholar

[20] M.A. Wijayanti, E.N. Sholikhah, I. Tahir, R. Hadanu, J. Jumina, S. Supargiyono, and M. Mustafa, “Antiplasmodial activity and acute toxicity of N -alkyl and N -benzyl-1, 10-phenanthroline derivatives in mouse malaria model”, J. Health Sci., Vol. 52, Pp. 794–799, 2016.10.1248/jhs.52.794Search in Google Scholar

[21] E.N. Sholikhah, S. Supargiyono, J. Jumina, M.A. Wijayanti, I. Tahir, R. Hadanu, “Mustofa In vitro antiplasmodial activity and cytotoxicity of newly synthesized N -alkyl and N -benzyl-1, 10-phenanthroline derivatives”, Southeast Asian J Trop Med Public Health, 37, Pp. 1072–1077, 2006.Search in Google Scholar

[22] D. Fitriastuti, M.I.D. Mardjan, J. Jumina, M. Mustofa, “Synthesis and heme polymerization inhibitory activity (HPIA) assay of antiplasmodium of (1)- N -(3, 4-dimethoxybenzyl)-1, 10-phenanthrolinium bromide from vanillin”, Indones J. Chem., 14, Pp. 1–6, 2018.10.22146/ijc.21260Search in Google Scholar

[23] H. Shahroosvand, P. Abbasi, B. Notash, L. Najafi, “Separation of functionalized 5, 6-disubstituted-1, 10-phenanthroline for dye-sensitized solar cell applications”, J. Chem., 2019; Article ID 475843.10.1155/2013/475843Search in Google Scholar

[24] I. Weissbuch, L. Leiserowitz, “Interplay between malaria, crystalline hemozoin formation, and antimalarial drug action and design”, Chem Rev., 108, Pp. 4899–4914, 2018.Search in Google Scholar

[25] Y. Shen, B.P. Sullivan, “A Versatile Preparative Route to 5-Substituted-1,10-Phenanthroline Ligands via 1,10-Phenanthroline 5,6-Epoxide”, Inorg Chem., Vol. 34, Pp. 6235–6236, 2018.Search in Google Scholar

[26] D.E. Golan, A.H. Tashjian, and E.J. Armstrong, “Principles of pharmacology: the pathophysiologic basis of drug therapy”, 4st ed. Lippincott Williams & Wilkins, 2019.Search in Google Scholar

[27] F. Nosten, M. Van Vugt, R. Price, C. Luxemburger, K.L. Thway, A. Brockman, R. McGready, F. ter Kuile, S. Looareesuwan, and N.J. White, “Effects of artesunate-mefloquine combination on incidence of Plasmodium falciparum malaria and mefloquine resistance in western Thailand: a prospective study”, Lancet, 356, Pp. 297–302, 2020.10.1016/S0140-6736(00)02505-8Search in Google Scholar

eISSN:
2576-6732
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Chemistry, Sustainable and Green Chemistry, Catalysis, other