Otwarty dostęp

# Generalized functional inequalities in Banach spaces

,  oraz    | 29 sty 2021
O artykule

Zacytuj

In this paper, we solve and investigate the generalized additive functional inequalities $‖ F(∑i=1nxi)-∑i=1nF(xi) ‖≤‖ F(1n∑i=1nxi)-1n∑i=1nF(xi) ‖$ \left\| {F\left( {\sum\limits_{i = 1}^n {{x_i}} } \right) - \sum\limits_{i = 1}^n {F\left( {{x_i}} \right)} } \right\| \le \left\| {F\left( {{1 \over n}\sum\limits_{i = 1}^n {{x_i}} } \right) - {1 \over n}\sum\limits_{i = 1}^n {F\left( {{x_i}} \right)} } \right\| and $‖ F(1n∑i=1nxi)-1n∑i=1nF(xi) ‖≤‖ F(∑i=1nxi)-∑i=1nF(xi) ‖.$ \left\| {F\left( {{1 \over n}\sum\limits_{i = 1}^n {{x_i}} } \right) - {1 \over n}\sum\limits_{i = 1}^n {F\left( {{x_i}} \right)} } \right\| \le \left\| {F\left( {\sum\limits_{i = 1}^n {{x_i}} } \right) - \sum\limits_{i = 1}^n {F\left( {{x_i}} \right)} } \right\|.

Using the direct method, we prove the Hyers-Ulam stability of the functional inequalities (0.1) in Banach spaces and (0.2) in non-Archimedian Banach spaces.

eISSN:
2351-8227
Język:
Angielski
Częstotliwość wydawania:
3 razy w roku
Dziedziny czasopisma: