Otwarty dostęp

Growth performance, nutrient digestibility, and selected fecal microbiota are improved by β-glucan supplementation in weaner pigs


Zacytuj

AOAC (2007). Official methods of analysis of AOAC International. 18th ed. AOAC International, Gaithersburg, MD, USA.Search in Google Scholar

Arena M.P., Caggianiello G., Fiocco D., Russo P., Torelli M., Spano G., Capoz- zi V. (2014). Barleyβ-glucans-containing food enhances probiotic performances of beneficial bacteria. Int. J. Mol. Sci., 15: 3025-3039.Search in Google Scholar

Bae K.H., Ko T.G., Kim J.H., Cho W.T., Han Y.K., Han I.K. (1999). Use of metabolically active substances to substitute for antibiotics in finishing pigs. Kor. J. Anim. Sci., 41: 23-30.Search in Google Scholar

Bosscher D., Van Loo J., Franck A. (2006). Inulin and oligofructose as prebiotics in the prevention of intestinal infections and diseases. Nutr. Res. Rev., 19: 216-226.Search in Google Scholar

Cheng G., Hao H., Xie S., Wang X., Dai M., Huang L., Yuan Z. (2014). Antibiotic alternatives: the substitution of antibiotics in animal husbandry? Front. Microbiol., 5: 217.Search in Google Scholar

Cho J.H., Kim I.H. (2015). Effects of lactulose supplementation on growth performance, nutrient digestibility, blood profiles, faecal microbial shedding, faecal score and faecal noxious gas emission in weanling pigs. J. Appl. Anim. Res., 43: 330-335.Search in Google Scholar

Dritz S.S., Shi J., Kielian T.L., Goodband R.D., Nelssen J.L., Tokach M.D., Chen - gappa M.M., Blecha F. (1995). Influence of dietary beta-glucan on growth performance, nonspecific immunity, and resistance to Streptococcus suis infection in weanling pigs. J. Anim. Sci., 73: 3341-3350.Search in Google Scholar

Ducatelle R., Eeckhaut V., Haesebrouck F., Van Immerseel F. (2015). Areview on prebiotics and probiotics for the control of dysbiosis: present status and future perspectives. Animal, 9: 43-48.Search in Google Scholar

Fenton T.W., Fenton M. (1979). An improved procedure for the determination of chromic oxide in feed and feces. Can. J. Anim. Sci., 59: 631-634.Search in Google Scholar

Fouhse J.M., Gänzle M.G., Regmi P.R.,van Kempen T.A., Zijlstra R.T. (2015). High amylose starch with low in vitro digestibility stimulates hindgut fermentation and hasabifidogenic effect in weaned pigs. J. Nutr., 145: 2464-2470.Search in Google Scholar

Hahn T.W., Lohakare J.D., Lee S.L., Moon W.K. Chae B.J. (2006). Effects of supplementation of β-glucans on growth performance, nutrient digestibility, and immunity in weanling pigs. J. Anim. Sci., 84: 1422-1428.Search in Google Scholar

Harris L. E. (1970). Nutrition research techniques for domestic and wild animals, Vol. 1. Utah State University, Logan, UT. USA.Search in Google Scholar

Hiss S., Sauerwein H. (2003). Influence of dietaryß-glucan on growth performance, lymphocyte proliferation, specific immune response and haptoglobin plasma concentrations in pigs. J. Anim. Physiol. Anim. Nutr., 87: 2-11.Search in Google Scholar

Huang C., Qiao S., Li D., Piao X., Ren J. (2004). Effects of lactobacilli on the performance, diarrhea incidence, VFAconcentration and gastrointestinal microbial flora of weaning pigs. Asian-Aust. J. Anim. Sci., 17: 401-409.Search in Google Scholar

Huff G.R., Huff W.E., Rath N.C., Tellez G. (2006). Limited treatment withβ-1,3/1,6-glucan improves production values of broiler chickens challenged with Escherichia coli. Poultry Sci., 85: 613-618.Search in Google Scholar

Jaskari J., Kontula P., Siitonen A., Jousimies- Somer H., Mattila- Sandholm T., Poutanen K. (1998). Oatβ-glucan and xylan hydrolysates as selective substrates for Bifidobacterium and Lactobacillus strains. Appl. Microbiol. Biotechnol., 49: 175-181Search in Google Scholar

Ke Y.L., Jiao L.F., Song Z.H., Xiao K., Lai T.M., Lu J.J., Hu C.H. (2014). Effects of cetylpyridinium- montmorillonite, as alternative to antibiotic, on the growth performance, intestinal microflora and mucosal architecture of weaned pigs. Anim. Feed Sci. Technol., 198: 257-262.Search in Google Scholar

Kim J.C., Hansen C.F., Mullan B.P., Pluske J.R. (2012). Nutrition and pathology of weaner pigs: nutritional strategies to support barrier function in the gastrointestinal tract. Anim. Feed Sci. Technol., 173: 3-16.Search in Google Scholar

Ko T.G., Kim J.D., Han Y.K., Han I.K. (2000). Study for the development of antibiotics-free diet for growing pigs. Kor. J. Anim. Sci., 42: 45-54.Search in Google Scholar

Lallès J., Bosi P., Smidt H., Stokes C.R. (2007). Nutritional management of gut health in pigs around weaning. Proc. Nutr. Soc., 66: 260-268.Search in Google Scholar

Levy S. (2014). Reduced antibiotic use in livestock: how Denmark tackled resistance. Environ. Health Perspect., 122: A160-A165.Search in Google Scholar

Li J., Xing J., Li D., Wang X., Zhao L., Lv S., Huang D. (2005). Effects ofβ-glucan extracted from Saccharomyces cerevisiae on humoral and cellular immunity in weaned piglets. Arch. Anim. Nutr., 59: 303-312.Search in Google Scholar

Li J., Li D.F., Xing J.J., Cheng Z.B., Lai C.H. (2006). Effects ofβ-glucan extracted from Saccharomyces cerevisiae on growth performance, and immunological and somatotropic responses of pigs challenged with Escherichia coli lipopolysaccharide. J. Anim. Sci., 84: 2374-2381.Search in Google Scholar

Mao X.F., Piao X.S., Lai C.H., Li D.F., Xing J.J., Shi B.L. (2005). Effects ofβ-glucan obtained from the Chinese herb Astragalus membranaceus and lipopolysaccharide challenge on performance, immunological, adrenal, and somatotropic responses of weanling pigs. J. Anim. Sci., 83: 2775-2782.Search in Google Scholar

Mendel M., Chłopecka M., Dziekan N., Karlik W. (2017). Phytogenic feed additives as potential gut contractility modifiers -areview. Anim. Feed Sci. Technol., 230: 30-46.Search in Google Scholar

Metzler-Zebeli B.U., Zijlstra R.T., Mosenthin R., Gänzle, M.G. (2011). Dietary calcium phosphate content and oatβ-glucan influence gastrointestinal microbiota, butyrate-producing bacteria and butyrate fermentation in weaned pigs. FEMS Microbiol. Ecol., 75: 402-413.Search in Google Scholar

Metzler-Zebeli B.U., Gänzle M.G., Mosenthin R., Zijlstra R.T. (2012). Oatβ-glucan and dietary calcium and phosphorus differentially modify intestinal expression of proinflammatory cytokines and monocarboxylate transporter 1 and cecal morphology in weaned pigs. J. Nutr., 142: 668-674.Search in Google Scholar

Murphy P., Dal Bello F., O’ Doherty J., Arendt E.K., Sweeney T., Coffey A. (2013). Analysis of bacterial community shifts in the gastrointestinal tract of pigs fed diets supplemented with β-glucan from Laminaria digitata, Laminaria hyperborea and Saccharomyces cerevisiae. Animal, 7: 1079-1087.Search in Google Scholar

NRC (2012). Nutrient Requirements of Swine, 11th rev. ed. Natl. Acad. Press, Washigton, DC, USA.Search in Google Scholar

O’ Shea C.J., Mc Alpine P., Sweeney T., Varley P.F., O’ Doherty J.V. (2014). Effect of the interaction of seaweed extracts containing laminarin and fucoidan with zinc oxide on the growth performance, digestibility and faecal characteristics of growing piglets. Brit. J. Nutr., 111: 798-807.Search in Google Scholar

Salim H.M., Kang H.K., Akter N., Kim D.W., Kim J.H, Kim M.J., Na J.C., Jong H.B., Choi H.C., Suh O.S., Kim W.K. (2013). Supplementation of direct-fed microbials as an alternative to antibiotic on growth performance, immune response, cecal microbial population, and ileal morphology of broiler chickens. Poultry Sci., 92: 2084-2090.Search in Google Scholar

Sweeney T., Collins C.B., Reilly P., Pierce K.M., Ryan M., O’ Doherty J.V. (2012). Effect of purifiedβ-glucans derived from Laminaria digitata, Laminaria hyperborea and Saccharomyces cerevisiae on piglet performance, selected bacterial populations, volatile fatty acids and pro-inflammatory cytokines in the gastrointestinal tract of pigs. Brit. J. Nutr., 108: 1226-1234.Search in Google Scholar

Thacker P.A. (2013). Alternatives to antibiotics as growth promoters for use in swine production: a review. J. Anim. Sci. Biotechnol., 4: 35.Search in Google Scholar

Volman J.J., Ramarkers J.D., Plat J. (2008). Dietary modulation of immune function by β-glucans. Physiol. Behav., 94: 276-284.Search in Google Scholar

Wang Z., Guo Y., Yuan J., Zhang B. (2008 a). Effect of dietaryβ-1,3/1,6-glucan supplementation on growth performance, immune response and plasma prostaglandin E2, growth hormone and ghrelin in weanling piglets. Asian-Aust. J. Anim. Sci., 21: 707-714.10.5713/ajas.2008.70559Search in Google Scholar

Wang Z., Shao Y., Guo Y., Yuan J. (2008 b). Enhancement of peripheral blood CD8+ Tcells and classical swine fever antibodies by dietaryβ-1,3/1,6-glucan supplementation in weaned piglets. Transbound. Emerg. Dis., 55: 369-376.10.1111/j.1865-1682.2008.01049.x18761656Search in Google Scholar

Williams C.H., David D.J., Iismaa O. (1962). The determination of chromic oxide in faeces samples by atomic absorption spectrophotometry. J. Agric. Sci., 59: 381-385.Search in Google Scholar

Zhang Z.F., Zhou T.X., Ao X., Kim I.H. (2012). Effects ofβ-glucan and Bacillus subtilis on growth performance, blood profiles, relative organ weight and meat quality in broilers fed maize- soybean meal based diets. Livest. Sci., 150: 419-424.Search in Google Scholar

Zhou T.X., Jung J.H., Zhang Z.F., Kim I.H. (2013). Effect of dietaryβ-glucan on growth performance, fecal microbial shedding and immunological responses after lipopolysaccharide challenge in weaned pigs. Anim. Feed Sci. Technol., 179: 85-92.Search in Google Scholar

eISSN:
2300-8733
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine