Otwarty dostęp

Welding Thermal Cycles of Joints Made of S1100QL Steel by Saw and Hybrid Plasma-Mag Processes

   | 31 gru 2020


The aim of this article is to validate the method of conducting a multipoint temperature measurement in the area of welded joints as a tool for quality assessment of the joints in question. In order to establish a relationship between temperature readout at a given point, the value of heat input and the distance of the point form the weld axis, preliminary tests have been conducted on a set of padding welds. Correlation of measurement data analysis showed the high 0.99 level. In the second stage of the study, temperatures of joints welded with two different methods have been measured: the HPAW (Hybrid Plasma – Arc Welding) and classic SAW (Submerged Arc Welding) method. The obtained temperature curves reflect the intensity of heat input in a given welding process. When compared to thermal effects on metallographic specimens, the shapes of the curves show a potential for quality assessment of joints in production conditions. Estimating thermal effects with classic analytical methods proves imprecise with respect to advanced high-power welding processes. Monitoring temperature will allow to assess the quality of joints in the course of welding, which may be a remarkable factor in terms of limiting the HAZ (heat affected zone) tempering of joints made from MART steels (advanced high strength martensitic steel) – a phenomenon that exceedingly decreases the strength of the joints. The method for quality assessment of welded joints presented in this paper allows to extend the analysis of welding thermal conditions.

Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Materials Sciences, Functional and Smart Materials