Otwarty dostęp

Long non-coding RNA TINCR suppresses growth and epithelial-mesenchymal transition by inhibiting Wnt/β-catenin signaling pathway in human pancreatic cancer PANC-1 cells: Insights from in vitro and in vivo studies

 oraz    | 30 mar 2024

Zacytuj

P. Rawla, T. Sunkara and V. Gaduputi, Epidemiology of pancreatic cancer: Global trends, etiology and risk factors, World J. Oncol. 10(1) (2019) 10–27; https://doi.org/10.14740/wjon1166Search in Google Scholar

G. Lippi and C. Mattiuzzi, The global burden of pancreatic cancer, Arch. Med. Sci. 16(4) (2020) 820–824; https://doi.org/10.5114/aoms.2020.94845Search in Google Scholar

A. McGuigan, P. Kelly, R. C. Turkington, C. Jones, H. G. Coleman and R. S. McCain, Pancreatic cancer: A review of clinical diagnosis, epidemiology, treatment and outcomes, World J. Gastroenterol. 24(43) (2018) 4846–4861; https://doi.org/10.3748/wjg.v24.i43.4846Search in Google Scholar

E. G. Chiorean and A. L. Coveler, Pancreatic cancer: Optimizing treatment options, new, and emerging targeted therapies, Drug Des. Devel. Ther. 9 (2015) 3529–3545; https://doi.org/10.2147/DDDT.S60328Search in Google Scholar

D. R. Principe, P. W. Underwood, M. Korc, J. G. Trevino, H. G. Munshi and A. Rana, The current treatment paradigm for pancreatic ductal adenocarcinoma and barriers to therapeutic efficacy, Front. Oncol. 11 (2021) Article ID 88377 (25 pages); https://doi.org/10.3389/fonc.2021.688377Search in Google Scholar

J. Hunia, K. Gawalski, A. Szredzka, M. J. Suskiewicz and D. Nowis, The potential of PARP inhibitors in targeted cancer therapy and immunotherapy, Front. Mol. Biosci. 9 (2022) Article ID 1073797 (24 pages); https://doi.org/10.3389/fmolb.2022.1073797Search in Google Scholar

Y. You, X. Lai, Y. Pan, H. Zheng, J. Vera, S. Liu, S. Deng and L. Zhang, Artificial intelligence in cancer target identification and drug discovery, Signal Transduct. Target Ther. 7(1) (2022) Article ID 156 (24 pages); https://doi.org/10.1038/s41392-022-00994-0Search in Google Scholar

S. Dimitrov-Markov, J. Perales-Paton, B. Bockorny, A. Dopazo, M. Munoz, N. Banos, V. Bonilla, C. Menendez, Y. Duran, L. Huang, S. Perea, S. K. Muthuswamy, F. Al-Shahrour, P. P. Lopez-Casas and M. Hidalgo, Discovery of new targets to control metastasis in pancreatic cancer by single-cell transcriptomics analysis of circulating tumor cells, Mol. Cancer Ther. 19(8) (2020) 1751–1760; https://doi.org/10.1158/1535-7163.MCT-19-1166Search in Google Scholar

J. Yi, S. Li, C. Wang, N. Cao, H. Qu, C. Cheng, Z. Wang, L. Wang and L. Zhou, Potential applications of polyphenols on main ncRNAs regulations as novel therapeutic strategy for cancer, Biomed. Pharmacother. 113 (2019) Article ID 108703 (8 pages); https://doi.org/10.1016/j.biopha.2019.108703Search in Google Scholar

A. Vafadar, Z. Shabaninejad, A. Movahedpour, S. Mohammadi, S. Fathullahzadeh, H. R. Mirzaei, A. Namdar, A. Savardashtaki and H. Mirzaei, Long non-coding RNAs as epigenetic regulators in cancer, Curr. Pharm. Des. 25(33) (2019) 3563–3577; https://doi.org/10.2174/1381612825666190830161528Search in Google Scholar

L. Statello, C. J. Guo, L. L. Chen and M. Huarte, Gene regulation by long non-coding RNAs and its biological functions, Nat. Rev. Mol. Cell Biol. 22(2) (2021) 96–118; https://doi.org/10.1038/s41580-020-00315-9Search in Google Scholar

H. Sun, Z. Huang, W. Sheng and M. D. Xu, Emerging roles of long non-coding RNAs in tumor metabolism, J. Hematol Oncol. 11 (2018) Article ID 106 (16 pages); https://doi.org/10.1186/s13045-018-0648-7Search in Google Scholar

J. C. de Oliveira, L. C. Oliveira, C. Mathias, G. A. Pedroso, D. S. Lemos, A. Salviano-Silva, T. S. Jucoski, S. C. Lobo-Alves, E. P. Zambalde, G. A. Cipolla and D. F. Gradia, Long non-coding RNAs in cancer: Another layer of complexity, J. Gene Med. 21(1) (2019) e3065; https://doi.org/10.1002/jgm.3065Search in Google Scholar

Y. H. Lin, M. H. Wu, C. T. Yeh and K. H. Lin, Long non-coding RNAs as mediators of tumor micro-environment and liver cancer cell communication, Int. J. Mol. Sci. 19(12) (2018) Article ID 3742 (21 pages); https://doi.org/10.3390/ijms19123742Search in Google Scholar

Z. Ma, Y. Y. Wang, H. W. Xin, L. Wang, F. Arfuso, A. Dharmarajan, A. P. Kumar, H. Wang, F. R. Tang, S. Warrier, V. Tergaonkar and G. Sethi, The expanding roles of long non-coding RNAs in the regulation of cancer stem cells, Int. J. Biochem. Cell Biol. 108 (2019) 17–20; https://doi.org/10.1016/j.biocel.2019.01.003Search in Google Scholar

U. Sharma, T. S. Barwal, A. Malhotra, N. Pant, Vivek, D. Dey, A. Gautam, H. S. Tuli, K. M. Vasquez and A. Jain, Long non-coding RNA TINCR as potential biomarker and therapeutic target for cancer, Life Sci. 257 (2020) Article ID 118035; https://doi.org/10.1016/j.lfs.2020.118035Search in Google Scholar

S. Li, J. Li, H. Li, M. Gao, N. Li, Y. Wang, L. Tong, M. Song and Z. Yin, Clinicopathological and prognostic significance of TINCR in caner: A meta-analysis, Pathol. Res. Practice 215(10) (2019) Article ID 152596; https://doi.org/10.1016/j.prp.2019.152596Search in Google Scholar

S. Ghafouri-Fard, S. Dashti, M. Taheri and M. D. Omrani, TINCR: An lncRNA with dual functions in the carcinogenesis process, Non-coding RNA Res. 5(3) (2020) 109–115; https://doi.org/10.1016/j.ncrna.2020.06.003Search in Google Scholar

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods 25(4) (2001) 402–408; https://doi.org/10.1006/meth.2001.1262Search in Google Scholar

E. Ji, C. Kim, W. Kim and E. K. Lee, Role of long non-coding RNAs in metabolic control, Biochim. Biophys. Acta Gene Regul. Mech. 1863(4) (2020) Article ID 194348; https://doi.org/10.1016/j.bbagrm.2018.12.006Search in Google Scholar

M. E. Forrest and A. M. Khalil, Review: Regulation of the cancer epigenome by long non-coding RNAs, Cancer Lett. 407 (2017) 106–112; https://doi.org/10.1016/j.canlet.2017.03.040Search in Google Scholar

Q. Huang, J. Yan and R. Agami, Long non-coding RNAs in metastasis, Cancer Metastasis Rev. 37(1) (2018) 75-81; https://doi.org/10.1007/s10555-017-9713-xSearch in Google Scholar

X. Han, Y. Jia, X. Chen, C. Sun and J. Sun, lncRNA TINCR attenuates the proliferation and invasion, and enhances the apoptosis of cutaneous malignant melanoma cells by regulating the miR-424-5p/LATS1 axis, Oncol. Rep. 46(5) (2021) Article ID 238 (11 pages); https://doi.org/10.3892/or.2021.8189Search in Google Scholar

Y. Wang, L. Zhou, J. Lu, B. Jiang, C. Liu, J. Guo and G. G. Xiao, Research progress on long non-coding RNAs and their roles as potential biomarkers for diagnosis and prognosis in pancreatic cancer, Cancer Cell Int. 20 (2020) Article ID 457 (12 pages); https://doi.org/10.1186/s12935-020-01550-ySearch in Google Scholar

D. Lu, S. Di, S. Zhuo, L. Zhou, R. Bai, T. Ma, Z. Zou, C. Chen, M. Sun, J. Tang and Z. Zhang, The long noncoding RNA TINCR promotes breast cancer cell proliferation and migration by regulating OAS1, Cell Death Discov. 7(1) (2021) Article ID 41 (16 pages); https://doi.org/10.1038/s41420-021-00419-xSearch in Google Scholar

X. Liu, J. Ma, F. Xu and L. Li, TINCR suppresses proliferation and invasion through regulating miR-544a/FBXW7 axis in lung cancer, Biomed. Pharmacother. 99 (2018) 9–17; https://doi.org/10.1016/j.biopha.2018.01.049Search in Google Scholar

M. Esposito, S. Ganesan and Y. Kang, Emerging strategies for treating metastasis, Nat. Cancer 2(3) (2021) 258–270; https://doi.org/10.1038/s43018-021-00181-0Search in Google Scholar

N. M. Novikov, S. Y. Zolotaryova, A. M. Gautreau and E. V. Denisov, Mutational drivers of cancer cell migration and invasion, Br. J. Cancer 124(1) (2021) 102–114; https://doi.org/10.1038/s41416-020-01149-0Search in Google Scholar

J. Winkler, A. Abisoye-Ogunniyan, K. J. Metcalf and Z. Werb, Concepts of extracellular matrix remodelling in tumour progression and metastasis, Nat. Commun. 11 (2020) Article ID 5120 (19 pages); https://doi.org/10.1038/s41467-020-18794-xSearch in Google Scholar

D. Lu, S. Di, S. Zhuo, L. Zhou, R. Bai, T. Ma, Z. Zou, C. Chen, M. Sun, J. Tang and Z. Zhang, The long noncoding RNA TINCR promotes breast cancer cell proliferation and migration by regulating OAS1, Cell Death Discov. 7(1) (2021) Article ID 41 (16 pages); https://doi.org/10.1038/s41420-021-00419-xSearch in Google Scholar

Y. Zhang and X. Wang, Targeting the Wnt/beta-catenin signaling pathway in cancer, J. Hematol. Oncol. 13 (2020) Article ID 165 (16 pages); https://doi.org/10.1186/s13045-020-00990-3Search in Google Scholar

eISSN:
1846-9558
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Pharmacy, other