Accesso libero

Automatic simplification of the geometry of a cartographic line using contractive self-mapping – illustrated with an example of a polyline band

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Ajdacka, I., & Karsznia, I. (2022). Verifying and improving map specifications of river network selection for automatic generalization of small-scale maps. Polish Cartographical Review, 54(1), 75–91. https://doi.org/10.2478/pcr-2022-0006 Search in Google Scholar

Arora, S., Ge, R., Neyshabur, B., & Zhang, Y. (2018). Stronger generalization bounds for deep nets via a compression approach. Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July. Search in Google Scholar

Balboa, J. L. G., & Lopez, F. J. A. (2000). Frequency filtering of linear elements by means of wavelets. A method and an example. The Cartographic Journal, 37(1), 39–50. https://doi.org/10.1179/caj.2000.37.1.39 Search in Google Scholar

Balboa, J. L. G., & López, F. J. A. (2008). Generalization-oriented road line classification by means of an artificial neural network. Geoinformatica, 12(3), 289–312. https://doi.org/10.1007/s10707-007-0026-z Search in Google Scholar

Banasik, P., Chrobak, T., & Biegun, B. (2022). Algorithm of automatic digital cartographic generalisation with the use of contractive self-mapping. Polish Cartographical Review, 54(1), 1–10. https://doi.org/10.2478/pcr-2022-0001 Search in Google Scholar

Barańska, A., Bac-Bronowicz, J., Dejniak, D., Lewiń-ski, S., Krawczyk, A., & Chrobak, T. (2021). A unified methodology for the generalisation of the geometry of features. ISPRS International Journal of Geo-Information, 10(3), 107. https://doi.org/10.3390/ijgi10030107 Search in Google Scholar

Berg, M., Kreveld, M., & Schirra, S. (1995). A new approach to subdivision simplification. Proceedings of the ACSM/ASPRS Annual Convention and Exposition Technical Papers, Charlotte NC, USA, 27 February – 2 March, 4, 79–88. Search in Google Scholar

Berg, M., Kreveld, M., & Schirra, S. (1998). Topologically correct subdivision simplification using the bandwidth criterion. Cartography and Geographic Information Science, 25(4), 243–257. https://doi.org/10.1559/152304098782383007 Search in Google Scholar

Bjørke, J. T. (1996). Framework for entropy-based map evaluation. Cartography and Geographic Information Systems, 23(2), 78–95. https://doi.org/10.1559/152304096782562136 Search in Google Scholar

Bjørke, J. T. (2003). Generalization of road networks for mobile map services: an information theoretic approach. Proceedings of the 21st International Cartographic Conference (ICA), Durban, RPA, 10–16 August. Search in Google Scholar

Blana, N., Kavadas, I., & Tsoulos, L. (2023). A constraint-based generalization model incorporating a quality control mechanism. Geographies, 3(2), 321–343. https://doi.org/10.3390/geographies3020017 Search in Google Scholar

Borkowski, A., & Keller, W. (2003). Modelling of irregulary sampled surfaces by two-dimensional snakes. Journal of Geodesy, 77, 543–553. Search in Google Scholar

Boutoura, C. (1989). Line generalization using spectral techniques. Cartographica, 26(3&4), 33–48. https://doi.org/10.3138/G237-67W4-15N4-1R59 Search in Google Scholar

Brassel, K. E, & Weibel, R. (1988). A review and conceptual framework of automated map generalization. International Journal of Geographical Information Systems, 2(3), 229–244. https://doi.org/10.1080/02693798808927898 Search in Google Scholar

Bronsztejn, I. N., Siemiendiajew, K. A., Musiol, G., & Muhlig, H. (2011). Nowoczesne kompendium matematyki. PWN. Search in Google Scholar

Burghardt, D. (2005). Controlled line smoothing by snakes. GeoInformatica, 9(3), 237–252. https://doi.org/10.1007/s10707-005-1283-3 Search in Google Scholar

Burghardt, D., & Meier, S. (1997). Cartographic displacement using the snakes concept. In W. Förstner & L. Förstner (Eds.), Semantic Modeling for the Acquisition of Topographic Information from Images and Maps: SMATI 97 (pp. 59–71). Birkhäuser Verlag. Search in Google Scholar

Burghardt, D., & Schmid, S. (2009). Constraint-based evaluation of automated and manual generalised topographic maps. In G. Gartner & F. Ortag (Eds.), Cartography in Central and Eastern Europe. Lecture Notes in Geoinformation and Cartography (pp. 147–162). Springer. https://doi.org/10.1007/978-3-642-03294-3_9 Search in Google Scholar

Burghardt, D., Neun, M., & Weibel, R. (2005). Generalization services on the web-classification and an initial prototype implementation. Cartography and Geographic Information Science, 32(4), 257–268. https://doi.org/10.1559/152304005775194665 Search in Google Scholar

Burghardt, D., Schmid, S., Duchêne, C., Stoter, J., Baella, B., Regnauld, N., & Touya, G. (2008). Methodologies for the evaluation of generalised data derived with commercial available generalisation systems. Proceedings of the 11th ICA Workshop on Generalization and Multiple Representation, Montpellier, France, 20–21 June, 1–16. https://doi.org/10.5167/uzh-6877 Search in Google Scholar

Cebrykow, J. (2017). Generalizacja map statystycznych. Wydawnictwo UMCS. Search in Google Scholar

Chaudhry, O., & Mackaness, W. (2008). Partitioning techniques to make manageable the generalisation of national spatial datasets. Proceedings of the 11th ICA Workshop on Generalization and Multiple Representation, Montpellier, France, 20–21 June. Search in Google Scholar

Chrobak, T. (1999). Badanie przydatności trójkąta elementarnego w komputerowej generalizacji kartograficznej. UWND AGH. Search in Google Scholar

Chrobak, T. (2003). Metoda uogólnienia danych w procesie generalizacji obiektów liniowych. The Method of Generalization Data Objects Linear. Materiały Ogólnopolskiego Sympozjum Geoinformacji „Geoinformacja zintegrowanym narzędziem badań przestrzennych”, Wrocław–Polanica Zdrój, Poland, 15–17 September, Archiwum Fotogrametrii, Kartografii i Teledetekcji, 13 A, 33–38. Search in Google Scholar

Chrobak, T. (2007). Podstawy cyfrowej generalizacji kartograficznej. UWND AGH. Search in Google Scholar

Chrobak, T., Szombara, S., Kozioł, K., & Lupa, M. (2017). A method for assessing generalized data accuracy with linear object resolution verification. Geocarto International, 32(3), 238–256. https://doi.org/10.1080/10106049.2015.1133721 Search in Google Scholar

Courtial, A., El Ayedi, A., Touya, G., & Zang, X. (2020). Exploring the potential of deep learning segmentation for mountain roads generalisation. ISPRS International Journal of Geo-Information, 9(5), 338. https://doi.org/10.3390/ijgi9050338 Search in Google Scholar

Directive 2007/2/EC of the European Parliament and of the Council of 14 March 2007 establishing an Infrastructure for Spatial Information in the European Community (INSPIRE) Document 32007L0002 (2007) (European Union). http://data.europa.eu/eli/dir/2007/2/oj Search in Google Scholar

Douglas, D. H., & Peucker, T. K. (1973). Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica: The International Journal for Geographic Information and Geovisualization, 10(2), 112–122 https://doi.org/10.3138/FM57-6770-U75U-7727 Search in Google Scholar

Du, J., Wu, F., Yin, J., Liu, C., & Gong, X. (2022). Polyline simplification based on the artificial neural network with constraints of generalization knowledge. Cartography and Geographic Information Science, 49(4), 313-337. https://doi.org/10.1080/15230406.2021.2013944 Search in Google Scholar

Dupuis, B., Deligiannidis, G., & Simsekli, U. (2023). Generalization bounds using data-dependent fractal dimensions. Proceedings of the 40th International Conference on Machine Learning, Honolulu, Hawaii, USA, 23–29 July, 358, 8922–8968. https://doi.org/10.48550/arXiv.2302.02766 Search in Google Scholar

Dziubiński, I., & Świątkowski, T. (Eds.). (1982). Poradnik matematyczny. PWN. Search in Google Scholar

EPSG 2180. (2022). https://epsg.io/2180 Search in Google Scholar

Jepsen, T. S., Jensen, C. S., & Nielsen, T. D. (2022). Relation fusion networks: graph convolutional networks for road networks. IEEE Transactions on Intelligent Transportation Systems, 23(1), 418–429. https://doi.org/10.1109/TITS.2020.3011799 Search in Google Scholar

Jiang, B., & Claramunt, C. (2004). A structural approach to the model generalization of an urban street network. GeoInformatica, 8, 157–171. https://doi.org/10.1023/B:GEIN.0000017746.44824.70 Search in Google Scholar

Jiang, B., Liu, X., & Jia, T. (2013). Scaling of geographic space as a universal rule for map generalization. Annals of the Association of American Geographers, 103(4), 844–855. https://doi.org/10.1080/00045608.2013.765773 Search in Google Scholar

João, E. (1998). Causes and Consequences of Map Generalization. Taylor and Francis. Search in Google Scholar

Karsznia, I., Wereszczyńska, K., & Weibel, R. (2022). Make it simple: effective road selection for small-scale map design using decision-tree-based models. ISPRS International Journal of Geo-Information, 11(8), 457. https://doi.org/10.3390/ijgi11080457 Search in Google Scholar

Kass, M., Witkin, A., & Terzopoulos, D. (1987). Snakes: active contour models. Proceedings of the 1st International Conference on Computer Vision (ICCV’87), London, UK, 8–11 June, 259268. Search in Google Scholar

Kilpeläinen, T., & Sarjakoski, T. (1995). Incremental generalization for multiple representations of geographical objects. In J-P. Lagrange, R. Weibel & J-C. Muller (Eds.), GIS And Generalisation (pp. 209–218). CRC Press. https://doi.org/10.1201/9781003062646 Search in Google Scholar

Kozioł, K. (2013). A line simplification algorithm using interpolation. Annals of Geomatics, 11(3(60)), 45–59. Search in Google Scholar

Kronenfeld, B. J., Stanislawski, L. V., Buttenfield, B. P., & Brockmeyer, T. (2020). Simplification of polylines by segment collapse: minimizing areal displacement while preserving area. International Journal of Cartography, 6(1), 22–46. https://doi.org/10.1080/23729333.2019.1631535 Search in Google Scholar

Lagrange, F., Landras, B., & Mustiere, S. (2000). Machine learning techniques for determining parameters of cartographic generalisation algorithms. International Archives of Photogrammetry and Remote Sensing, 13(B4), 718–725. Search in Google Scholar

Lang, T. (1969). Rules for robot draughtsman. The Geographical Magazine, 42, 50–51. Search in Google Scholar

Li, Z. (2007). Digital map generalization at the age of enlightenment: a review of the first forty years. The Cartographic Journal, 44(1), 80–93. https://doi.org/10.1179/000870407X173913 Search in Google Scholar

Li, Z., & Choi, Y. H. (2002). Topographic map generalization: association of road elimination with thematic attributes. The Cartographic Journal, 39(2), 153–166. https://doi.org/10.1179/caj.2002.39.2.153 Search in Google Scholar

Li, Z., & Openshaw, S. (1992). Algorithms for automated line generalization based on a natural principle of objective generalization. International Journal of Geographical Information Systems, 6(5), 373–389. https://doi.org/10.1080/02693799208901921 Search in Google Scholar

Li, Z., & Su, B. (1995). From phenomena to essence: envisioning the nature of digital map generalisation. The Cartographic Journal, 32(1), 45–47. https://doi.org/10.1179/000870495787073852 Search in Google Scholar

Liu, Y., & Li, W. (2019). A new algorithms of stroke generation considering geometric and structural properties of road network. ISPRS International Journal of Geo-Information, 8(7), 304. https://doi.org/10.3390/ijgi8070304 Search in Google Scholar

Mackaness, M., Ruas, A., & Sarjakoski, L. T. (2007). Generalisation of geographic information: cartographic modelling and applications. Elsevier. Search in Google Scholar

Maudet, A., Touya, G., Duchêne, C., & Picault, S. (2017). DIOGEN, a multi-level oriented model for cartographic generalization. International Journal of Cartography, 3(1), 121–133. https://doi.org/10.1080/23729333.2017.1300997 Search in Google Scholar

McMaster, R. B. (1986). A statistical analysis of mathematical measures for linear simplification. The American Cartographer, 13(2), 103–116. https://doi.org/10.1559/152304086783900059 Search in Google Scholar

McMaster, R. B. (1987). Automated line generalization. Cartographica: The International Journal for Geographic Information and Geovisualization, 24(2), 74–111, https://doi.org/10.3138/3535-7609-781G-4L20 Search in Google Scholar

McMaster, R. B., & Shea, K. S. (1992). Generalization in digital cartography. Association of American Geographers. Search in Google Scholar

Muller, J. C., & Mouwes, P. J. (1990). Knowledge acquisition and representation for rule based map generalization: an example from the Netherlands. Proceedings of the GIS/LIS ‘90, Anaheim, California, 7–10 November, 1, 58–67. Search in Google Scholar

Neun, M., Burghardt, D., & Weibel, R. (2009). Automated processing for map generalization with web services. GeoInformatica, 13(4), 425–452. https://doi.org/10.1007/s10707-008-0054-3 Search in Google Scholar

Opheim, H. (1982). Fast data reduction of a digitized curve. Geo-Processing, 2, 33-40. Search in Google Scholar

Pannekoek, A. J. (1962). Generalization of coastlines and contours. International Yearbook of Cartography, 2, 55–75. Search in Google Scholar

Perkal, J. (1958). Próba obiektywnej generalizacji. Geodezja i Kartografia, 6(2), 130–142. Search in Google Scholar

Perkal, J. (1966). On the length of empirical curves, Discussion paper number 10. Michigan Inter-University Community of Mathematical Geographers. Search in Google Scholar

Plazanet, C., Affholder, J. G., & Fritsch, E. (1995). The importance of geometric modeling in linear feature generalization. Cartography and Geographic Information Systems, 22(4), 291–305. https://doi.org/10.1559/152304095782540276 Search in Google Scholar

Regnauld, N. (2015). Generalisation and data quality. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-3/W3, 91–94. https://doi.org/10.5194/isprsarchives-XL-3-W3-91-2015 Search in Google Scholar

Robinson, A., Sale, R., & Morrison, J. (1988). Podstawy kartografii. PWN. Search in Google Scholar

Rozporządzenie Ministra Rozwoju, Pracy i Technologii z dnia 27 lipca 2021 r. w sprawie bazy danych obiektów topograficznych oraz bazy danych obiektów ogólnogeograficznych, a także standardowych opracowań kartograficznych Dz.U. 2021 poz. 1412 (2021) (Polska). https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20210001412 Search in Google Scholar

Saalfeld, A. (1999). Topologically consistent line simplification with the Douglas–Peucker algorithm. Cartography and Geographic Information Science, 26(1), 7–18. https://doi.org/10.1559/152304099782424901 Search in Google Scholar

Salichtchev, K. A. (1967). Задачи картограϐè̈ и аϐто-матизацьѣ [Cartographic tasks and automation]. Izw. Wysszych Zawied. Gieod. i Aerofot., 4, 7–10. Search in Google Scholar

Salichtchev, K. A. (2003). Kartografia ogólna. PWN. Search in Google Scholar

Sester, M., Anders K-H., & Walter, V. (1998). Linking objects of different spatial data sets by integration and aggregation. GeoInformatica, 2, 335–358. https://doi.org/10.1023/A:1009705404707 Search in Google Scholar

Sester, M., Feng, Y., & Thiemann, F. (2018). Building generalization using deep learning. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-4, 565–572. https://doi.org/10.5194/isprs-archives-XLII-4-565-2018 Search in Google Scholar

Srnka, E. (1970). The analytical solution of regular generalization in cartography. International Year-book of Cartography, 10, 48–62. Search in Google Scholar

Stoter, J., Burghardt, D., Duchêne, C., Baella, B., Bakke, N., Blok, C., Pla, M., Regnauld, N., Touya, G., & Schmid, S. (2009b). Methodology for evaluating automated map generalization in commercial software. Computers, Environment and Urban Systems, 33(5), 311–324. https://doi.org/10.1016/j.compenvurbsys.2009.06.002 Search in Google Scholar

Stoter, J., van Altena, V., Post, M., Burghardt, D., & Duchêne, C. (2016). Automated generalisation within NMAs in 2016. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B4, 647–652. https://doi.org/10.5194/isprs-archives-XLI-B4-647-2016 Search in Google Scholar

Stoter, J., van Smaalen, J., Bakker, N., & Hardy, P. (2009a). Specifying map requirements for automated generalization of topographic data. The Cartographic Journal, 46(3), 214–227. https://doi.org/10.1179/174327709X446637 Search in Google Scholar

von Sydow, E. (1866). Drei Karten-Klippen. Geo-Kartographische Betrachtung. Geographisches Jahrbuch, 348–361. Search in Google Scholar

Tobler, W. R. (1964). Technical report No. 1, „An experiment in the computer generalization of maps”. Department of geography University of Michigan. https://deepblue.lib.umich.edu/bitstream/handle/2027.42/7972/aja5779.0001.001.pdf?sequence=5&isAllowed=y Search in Google Scholar

Touya, G. (2007). A road network selection process based on data enrichment and structure detection. Proceedings of the 10th ICA Workshop on Generalisation and Multiple Representation, Moscow, Russia, 2–3 August, 595–614. Search in Google Scholar

Touya, G., Zhang, X., & Lokhat, I. (2019). Is deep learning the new agent for map generalization? International Journal of Cartography, 5(2–3), 142–157. https://doi.org/10.1080/23729333.2019.1613071 Search in Google Scholar

Trinder, J. C., & Li, H. (1995). Semi-automatic feature extraction by snakes. In A. Gruen, O. Kuebler & P. Agouris (Eds.), Monte Verità: Automatic extraction of man-made objects from aerial and space images (pp. 95–104). Birkhäuser Verlag. https://doi.org/10.1007/978-3-0348-9242-1_10 Search in Google Scholar

Visvalingam, M., & Whyatt J. D. (1991). Cartographic algorithms: problems of implementation and evaluation and the impact of digitising errors. Computer Graphics Forum, 10(3), 225–235. https://doi.org/10.1111/1467-8659.1030225 Search in Google Scholar

Visvalingam, M., & Whyatt, D. (1990). The Douglas–Peucker algorithm for line simplification: re-evaluation through visualization. Computer Graphics Forum, 9(3), 213–225. https://doi.org/10.1111/j.1467-8659.1990.tb00398.x Search in Google Scholar

Visvalingam, M., & Whyatt, J. (1993). Line generalisation by repeated elimination of points. Cartographic Journal, 30(1), 46–51. Search in Google Scholar

Wang, Z., Muller, J-C. (1998). Line generalization based on analysis of shape characteristics. Cartography and Geographic Information Systems, 25(1), 3–15. https://doi.org/10.1559/152304098782441750 Search in Google Scholar

Weibel, R. (1995). Three essential building blocks for automated generalization. In J-P, Lagrange, R. Weibel, & J-C, Muller (Eds.), GIS and Generalization: Methodology and Practice (pp. 56–69). Taylor & Francis. Search in Google Scholar

Weibel, R. (1996). A typology of constraints to line simplification. In M. J. Kraak & M. Molenaar (Eds.), Advances in GIS Research II (7th International Symposium on Spatial Data Handling) (pp. 533–546). Taylor & Francis. Search in Google Scholar

Weibel, R., & Dutton, G. H. (1998). Constraints-based automated map generalization. Proceedings of the 8th International Symposium on Spatial Data Handling, Vancouver, BC, Canada, 214–224. Search in Google Scholar

Weiss, R., & Weibel, R. (2014). Road network selection for small-scale maps using an improved centrality-based algorithm. Journal of Spatial Information Science, 9, 71–99. https://doi.org/10.5311/JOSIS.2014.9.166 Search in Google Scholar

Werschlein, T., & Weibel, R. (1994). Use of neural networks in line generalization. Proceedings of the Fifth European Conference and Exhibition on Geographical Information Systems, Paris, France, 30 March–1 April, 76–85. Search in Google Scholar

White, E. R. (1985). Assessment of line-generalization algorithms using characteristic points. The American Cartographer, 12(1), 17–28. https://doi.org/10.1559/152304085783914703 Search in Google Scholar

Wu, H. (1997). Structured approach to implementing automatic cartographic generalization. Proceedings of the 18th ICA International Cartographic Conference, Stockholm, Sweden, 23–27 June, 1, 349–356. Search in Google Scholar

Xiao, T., Ai, T., Yu, H., Yang, M., & Liu, P. (2023). A point selection method in map generalization using graph convolutional network model. Cartography and Geographic Information Science, 1–21. https://doi.org/10.1080/15230406.2023.2187886 Search in Google Scholar

Yan, H. (2019). Description Approaches and Automated Generalization Algorithms for Groups of Map Objects. Springer. Search in Google Scholar

Yan, H., Yang, W., Lu, X., & Li, P. (2023). Quantitative expressions of spatial similarity between road networks in multiscale map spaces. International Journal of Cartography, 9(3), 554–570. https://doi.org/10.1080/23729333.2023.2236266 Search in Google Scholar

Yan, H., Zhang, X., Lu, X., & Li, P. (2022). Approach to automating the DP algorithm – taking river simplification as an example. Geomatics and Information Science of Wuhan University. https://doi.org/10.13203/j.whugis20210412 Search in Google Scholar

Yan, X., & Yang, M. (2023). A deep learning approach for polyline and building simplification based on graph autoencoder with flexible constraints. Cartography and Geographic Information Science, 1–18. https://doi.org/10.1080/15230406.2023.2218106 Search in Google Scholar

Zasoby Głównego Urzędu Geodezji i Kartografii. Geo-portal. https://mapy.geoportal.gov.pl/ Search in Google Scholar

Zhang, Q. (2004). Road network generalization based on connection analysis. Proceedings of the 11th International Symposium on Spatial Data Handling, Leicester, UK, 23–25 August, 343–353. Search in Google Scholar

Zheng, J., Gao, Z., Ma, J., Shen, J., & Zhang, K. (2021). Deep graph convolutional networks for accurate automatic road network selection. ISPRS International Journal of Geo-Information, 10(11), 768. https://doi.org/10.3390/ijgi10110768 Search in Google Scholar

Zheng, L., & Tian, Z. (1997). Refinement of Douglas–Peucker algorithm to move the segments toward only one side. Proceedings of 18th International Cartographic Conference, Stockholm, Sweden, 23–27 June, 830–835. Search in Google Scholar

Zhou, J., Shen, J., Yang, S., Yu, Z., Stanek, K., & Stampach, R. (2018). Method of constructing point generalization constraints based on the cloud platform. ISPRS International Journal of Geo-Information, 7(7), 235. https://doi.org/10.3390/ijgi7070235 Search in Google Scholar

Zhou, Q., & Li, Z. (2014). Use of artificial neural networks for selective omission in updating road networks. The Cartographic Journal, 51(1), 38–51. Search in Google Scholar

eISSN:
2450-6966
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Geosciences, Cartography and Photogrammetry, other, History, Topics in History, History of Science