Accesso libero

Developmental and biochemical analyses of in vitro drought stress response in ornamental European Bluestar (Amsonia orientalis Decne.)

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Acemi A., Özen F., Kiran R., 2012. Development of an efficient callus production protocol for Amsonia orientalis: A critically endangered medicinal plant. Eurasia J. Biosci. 6, 105-112.10.5053/ejobios.2012.6.0.13Search in Google Scholar

Acemi A., Özen F., Kiran R., 2013. In vitro propagation of Amsonia orientalis Decne. from nodal segments of adult plants. Propag. Ornam. Plants 13(1), 25-32.Search in Google Scholar

Acemi A., Türker-Kaya S., Özen F., 2016. FT-IR spectroscopy based evaluation of changes in primary metabolites of Amsonia orientalis after in vitro 6-benzylaminopurine treatment. Not. Bot. Horti. Agrobot. 44(1), 209-214.10.15835/nbha44110194Search in Google Scholar

Acemi A., Duruksu G., Özen F., 2017a. Cytostatic effects of methanolic extracts of Amsonia orientalis Decne. on MCF-7 and DU145 cancer cell lines. Not. Bot. Horti. Agrobot. 45(1), 36-42.10.15835/nbha45110576Search in Google Scholar

Acemi A., Duman Y., Karakuş Y.Y., Kömpe Y.Ö., Özen F., 2017b. Analysis of plant growth and biochemical parameters in Amsonia orientalis after in vitro salt stress. Hortic. Environ. Biotechnol. 58(3), 231-239.10.1007/s13580-017-0215-0Search in Google Scholar

Aebi H., 1974. Methods of enzymatic analysis. In: Catalase. Bergmeyer H.U. (Ed.), Academic Press, New York, USA, 673-675.10.1016/B978-0-12-091302-2.50032-3Search in Google Scholar

Alam M., Hasanuzzaman M., Nahar K., Fujita M., 2013. Exogenous salicylic acid ameliorates short-term drought stress in mustard (Brassica juncea L.) seedlings by up-regulating the antioxidant defense and glyoxalase system. Aust. J. Crop Sci. 7(7), 1053-1063.Search in Google Scholar

Ammar M.H., Anwar F., El-Harty E.H., Migdad H.M., Abdel-Khalik S.M., Al-Faifi S.A., etal., 2014. Physiological and yield responses of Faba bean (Vicia faba L.) to drought stress in managed and open field environments. J. Agron. Crop Sci. 201(4), 280-287.10.1111/jac.12112Search in Google Scholar

Bates L.S., Waldren R.P., Teare I.D., 1973. Rapid determination of free proline for water stress studies. Plant Soil 39, 205-207.10.1007/BF00018060Search in Google Scholar

Behnamnia M., Kalantari K.M., Ziaie J., 2009. The effects of brassinosteroid on the induction of biochemical changes in Lycopersicon esculentum under drought stress. Turk J. Bot. 33, 417-428.10.3906/bot-0806-12Search in Google Scholar

Bern Convention, 1979. Convention on the conservation of European wildlife and natural habitats. https://rm.coe.int/CoERMPublicCommonSearchServices/DisplayDCTMContent?documentId=0900001680304354. Accessed 9 November 2017.Search in Google Scholar

Bradford M., 1976. A rapid and sensitive method for the quantification of microgram quantities of protein using the principle of protein-dye binding. Anal. Biochem. 72, 248-254.10.1016/0003-2697(76)90527-3Search in Google Scholar

Catola S., Marino G., Emiliani G., Huseynova T., Musayev Y., Akparov Z., Maserti B.E., 2016. Physiological and metabolomic analysis of Punica granatum (L.) under drought stress. Planta 243(2), 441-449.10.1007/s00425-015-2414-126452697Search in Google Scholar

Cruz De Carvalho M.H, 2008. Drought stress and reactive oxygen species. Plant Signal. Behav. 3(3), 156-165.10.4161/psb.3.3.5536263410919513210Search in Google Scholar

Dhindsa R.S., Plumb-Dhindsa P., Thorpe T.A., 1981. Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 32, 93-101.10.1093/jxb/32.1.93Search in Google Scholar

Dong X., Bi H., Wu G., Ai X., 2013. Drought-induced chilling tolerance in cucumber involves membrane stabilisation improved by antioxidant system. Int. J. Plant Prod. 7(1), 67-80.Search in Google Scholar

Doupis G., Chartzoulakis K., Beis A., Patakas A., 2011. Allometric and biochemical responses of grapevines subjected to drought and enhanced ultraviolet-B radiation. Aust. J. Grape Wine Res. 17, 36-42.10.1111/j.1755-0238.2010.00114.xSearch in Google Scholar

Farooq M., Wahid A., Kobayashi N., Fujita D., Basra S.M.A., 2009. Plant drought stress: Effects, mechanisms and management. Agron. Sustain. Dev. 29, 185-212.10.1051/agro:2008021Search in Google Scholar

Foyer C.H., Noctor G., 2000. Oxygen processing in photosynthesis: regulation and signaling. New Phytol. 146, 350-388.10.1046/j.1469-8137.2000.00667.xSearch in Google Scholar

Gong M., Chen B., Li Z., Guo L., 2001. Heat-shockinduced cross adaptation to heat, chilling, drought and salt stress in maize seedlings and involvement of H2O2. J. Plant Physiol. 158, 1125-1130.10.1078/0176-1617-00327Search in Google Scholar

Guo Y.-Y., Yu H.-Y., Kong D.-S., Yan F., Zhang Y.-J., 2016. Effects of drought stress on growth and chlorophyll fluorescence of Lycium ruthenicum Murr. seedlings. Photosynthetica 54(4), 524-531.10.1007/s11099-016-0206-xSearch in Google Scholar

rkanli C.T., Özkoç İ., Aydin E.B., Acemi A., Özen F., 2014. Genetic diversity of Amsonia orientalis. Biologia. 69, 742-749.10.2478/s11756-014-0368-6Search in Google Scholar

Ha S., Vankova R., Yamaguchi-Shinozaki K., Shinozaki K., Tran L.S.P., 2012. Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends Plant Sci. 17, 172-179.10.1016/j.tplants.2011.12.00522236698Search in Google Scholar

Hameed A., Goher M., Iqbal N., 2013. Drought induced programmed cell death and associated changes in antioxidants, proteases, and lipid peroxidation in wheat leaves. Biol. Plantarum 57(2), 370-374.10.1007/s10535-012-0286-9Search in Google Scholar

Ivanchenko M.G., Den Os D., Monhausen G.B., Dubrovsky J.G., Bednárová A., Krishnan N., 2013. Auxin increases the hydrogen peroxide (H2O2) concentration in tomato (Solanum lycopersicum) root tips while inhibiting root growth. Ann. Bot. 112, 1107-1116.10.1093/aob/mct181378324523965615Search in Google Scholar

Kang G.Z., Li G.Z., Liu G.Q., Xu W., Peng X.Q., Wang C.Y., etal., 2013. Exogenous salicylic acid enhances wheat drought tolerance by influence on the expression of genes related to ascorbate-glutathione cycle. Biol. Plantarum 57(4), 718-724.10.1007/s10535-013-0335-zSearch in Google Scholar

Kar M., Mishra D., 1976. Catalase, peroxidase, polyphenol oxidase activities during rice leaf senescence. Plant Physiol. 57, 315-319.10.1104/pp.57.2.315Search in Google Scholar

Krasensky J., Jonak C., 2012. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J. Exp. Bot. 63(4), 1593-1608.10.1093/jxb/err460Search in Google Scholar

Kubiś J., Zając M.R., 2008. Drought and excess UV-B irradiation differentially alter the antioxidant system in cucumber leaves. Acta Biol. Cracov. Bot. 50(2), 35-41.Search in Google Scholar

Li Z., Peng Y., Ma X., 2013. Different response on drought tolerance and post-drought recovery between the small-leafed and the large-leafed white clover (Trifolium repens L.) associated with antioxidative enzyme protection and lignin metabolism. Acta Physiol. Plant. 35, 213-222.10.1007/s11738-012-1066-zSearch in Google Scholar

Liao W-B., Huang G-B., Yu J-H., Zhang M-J., 2012. Nitric oxide and hydrogen peroxide alleviate drought stress in marigold explants and promote its adventitious root development. Plant Physiol. Biochem. 58, 6-15.10.1016/j.plaphy.2012.06.012Search in Google Scholar

Lichtenthaler H., 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Method Enzymol. 148, 350-382.10.1016/0076-6879(87)48036-1Search in Google Scholar

Ma H., Xu X., Feng L., 2014. Responses of antioxidant defenses and membrane damage to drought stress in fruit bodies of Auricularia auricula-judae. World J. Microbiol. Biotechnol. 30, 119-124.10.1007/s11274-013-1416-z23861039Search in Google Scholar

Mohammadkhani N., Heidari R., 2008. Effects of drought stress on soluble proteins in two maize varieties. Turk J. Biol. 32, 23-30.10.2478/v10020-008-0029-8Search in Google Scholar

Murashige T., Skoog F., 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plantarum 15, 473-497.10.1111/j.1399-3054.1962.tb08052.xSearch in Google Scholar

Neto A.D.A., Prisco J.T., Enéas-Filho J., Abreu C.E.B., Gomes-Filho E., 2006. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ. Exp. Bot. 56, 87-94.10.1016/j.envexpbot.2005.01.008Search in Google Scholar

Petrov V., Hille J., Mueller-Roeber B., Gechev T.S., 2015. ROS-mediated abiotic stress-induced programmed cell death in plants. Front. Plant Sci. 6, 69.10.3389/fpls.2015.00069433230125741354Search in Google Scholar

Proietti P., Nasini L., Buono D.D., D’Amato R., Tedeschini E., Businelli D., 2013. Selenium protects olive (Olea europaea L.) from drought stress. Sci. Hortic. 164, 165-171.10.1016/j.scienta.2013.09.034Search in Google Scholar

Roussos P.A., 2013. Growth and biochemical responses of jojoba (Simmondsia chinensis (Link) Schneid) explants cultured under mannitol-simulated drought stress in vitro. Plant Biosyst. 147(2), 272-284.10.1080/11263504.2013.768558Search in Google Scholar

Stadtman E.R., Levine R.L., 2000. Protein oxidation. Ann. NY. Acad. Sci. 899, 191-208.10.1111/j.1749-6632.2000.tb06187.x10863540Search in Google Scholar

Tingey D.T., Stockwell C., 1977. Semipermeable membrane system for subjecting plants to water-stress. Plant Physiol. 60, 58-62.10.1104/pp.60.1.5854254716660044Search in Google Scholar

Willekens H., Chamnongpol S., Davey M., Schraunder M., Langebartels C., Van Montagu M., Inzé D., Van Camp W., 1997. Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO J. 16, 4806-4816.10.1093/emboj/16.16.480611701169305623Search in Google Scholar

Wu G.Q., Zhang L.N., Wang Y.Y., 2012. Response of growth and antioxidant enzymes to osmotic stress in two different wheat (Triticum aestivum L.) cultivars seedlings. Plant Soil Environ. 58(12), 534-539.10.17221/373/2012-PSESearch in Google Scholar

Zhu J.K., 2002. Salt and drought stress signal transduction in plants. Ann. Rev. Plant Biol. 53, 247-273.10.1146/annurev.arplant.53.091401.143329312834812221975Search in Google Scholar

eISSN:
2083-5965
Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Life Sciences, Plant Science, Zoology, Ecology, other