Accesso libero

Clustering of Authors’ Texts of English Fiction in the Vector Space of Semantic Fields



This paper describes the analysis of possible differentiation of the author’s idiolect in the space of semantic fields; it also analyzes the clustering of text documents in the vector space of semantic fields and in the semantic space with orthogonal basis. The analysis showed that using the vector space model on the basis of semantic fields is efficient in cluster analysis algorithms of author’s texts in English fiction. The study of the distribution of authors' texts in the cluster structure showed the presence of the areas of semantic space that represent the idiolects of individual authors. Such areas are described by the clusters where only one author dominates. The clusters, where the texts of several authors dominate, can be considered as areas of semantic similarity of author’s styles. SVD factorization of the semantic fields matrix makes it possible to reduce significantly the dimension of the semantic space in the cluster analysis of author’s texts. Using the clustering of the semantic field vector space can be efficient in a comparative analysis of author's styles and idiolects. The clusters of some authors' idiolects are semantically invariant and do not depend on any changes in the basis of the semantic space and clustering method.

Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Computer Sciences, Information Technology