INFORMAZIONI SU QUESTO ARTICOLO

Cita

Brzóska M.M. (2012). Low-level chronic exposure to cadmium enhances the risk of long bone fractures: A study on a female rat model of human lifetime exposure. J. Appl. Toxicol., 32: 34–44.10.1002/jat.1632Search in Google Scholar

Brzóska M.M., Rogalska J., Galazyn-Sidorczuk M., Jurczuk M., Roszczenko A., Kulikowska-Karpińska E., Moniuszko-Jakoniuk J. (2007). Effect of zinc supplementation on bone metabolism in male rats chronically exposed to cadmium. Toxicology, 237: 89–103.10.1016/j.tox.2007.05.001Search in Google Scholar

Chen X., Zhu G., Jin T., Lei L., Liang Y. (2011). Bone mineral density is related with previous renal dysfunction caused by cadmium exposure. Environ. Toxicol. Pharmacol., 32: 46–53.10.1016/j.etap.2011.03.007Search in Google Scholar

Cretacci Y., Parsons P.J. (2010). Localized accumulation of lead within and among bones from lead-dosed goats. Environ. Res., 110: 26–32.10.1016/j.envres.2009.09.005Search in Google Scholar

Dermience M., Lognay G., Mathieu F., Goyens P. (2015). Effects of thirty elements on bone metabolism. J. Trace. Elem. Med. Biol., 32: 86–106.10.1016/j.jtemb.2015.06.005Search in Google Scholar

Devine A., Hodgson J.M., Dick I.M., Prince R.L. (2007). Tea drinking is associated with benefits on bone density in older women. Am. J. Clin. Nutr., 86: 1243–1247.10.1093/ajcn/86.4.1243Search in Google Scholar

Dobrowolski P., Tomaszewska E., Kurlak P., Pierzynowski S.G. (2016). Dietary 2-oxoglutarate mitigates gastrectomy-evoked structural changes in cartilage of female rats. Exp. Biol. Med., 241: 14–24.10.1177/1535370215595466Search in Google Scholar

Duranova H., Martiniakova M., Imelka R., Grosskopf B., Bobonova I., Toman R. (2014). Changes in compact bone microstructure of rats subchronically exposed to cadmium. Acta. Vet. Scand., 56: 64.10.1186/s13028-014-0064-0Search in Google Scholar

EFSA (2012 a). Lead dietary exposure in the European population. EFSA J., 10: 2831.10.2903/j.efsa.2012.2831Search in Google Scholar

EFSA (2012 b). Cadmium dietary exposure in the European population. EFSA J., 10: 2551.10.2903/j.efsa.2012.2551Search in Google Scholar

Gaur S., Agnihorti R. (2014). Green tea: a novel functional food for the oral health of older adults. Geriatr. Gerontol. Int., 14: 238–250.10.1111/ggi.12194Search in Google Scholar

Green C.J., de Dauwe P., Bpyle T., Tabatabaei S.M., Fritschi L., Heyworth S. (2014). Tea, coffee, and milk consumption and colorectal cancer risk. J. Epidemiol., 24: 146–153.10.2188/jea.JE20130063Search in Google Scholar

Gülçin I., Huyut Z., Elmastaş M., Aboul-Enein H.Y. (2010). Radical scavenging and antioxidant activity of tannic acid. Arabian J. Chem., 3: 43–53.10.1016/j.arabjc.2009.12.008Search in Google Scholar

Hilal Y., Engelhardt U. (2007). Characterization of white tea – Comparison to green and black tea. J. Verbr. Lebensm., 2: 414–421.10.1007/s00003-007-0250-3Search in Google Scholar

Hogervorst J., Plusquin M., Vangronsveld J., Nawrot T., Cuypers A., Van Hecke E., Roels H.A., Carleer R., Staessen J.A. (2007). House dust as possible route of environmental exposure to cadmium and lead in the adult general population. Environ. Res., 103: 30–37.10.1016/j.envres.2006.05.009Search in Google Scholar

James K.A., Meliker J.R. (2013). Environmental cadmium exposure and osteoporosis: a review. Int. J. Public Health., 58: 737–745.10.1007/s00038-013-0488-8Search in Google Scholar

Khalaf A.A., Moselhy W.A., Abdel-Hamed M.I. (2012). The protective effect of green tea extract on lead induced oxidative and DNA damage on rat brain. Neurotoxicol., 33: 280–289.10.1016/j.neuro.2012.02.003Search in Google Scholar

Lattouf R., Younes R., Lutomski D., Naaman N., Godeau G., Senni K., Changotade S. (2015). Picrosirius red staining: a useful tool to appraise collagen networks in normal and pathological tissues. J. Histochem. Cytochem., 62: 751–758.10.1369/0022155414545787Search in Google Scholar

Lim H.S., Lee H.H., Kim T.H., Lee B.R. (2016). Relationship between heavy metal exposure and bone mineral density in Korean adult. J. Bone Metab., 23: 223–231.10.11005/jbm.2016.23.4.223Search in Google Scholar

Maeda-Yamamoto M. (2013). Human clinical studies of tea polyphenols in allergy or life style-related diseases. Curr. Pharm. Des., 19: 6148–6155.10.2174/1381612811319340009Search in Google Scholar

Muszyński S., Kwiecień M., Tomaszewska E., Świetlicka I., Dobrowolski P., Kasperek K., Jeżewska-Witkowska G. (2017). Effect of caponization on performance and quality characteristics of long bones in Polbar chickens. Poultry Sci., 96: 491–500.10.3382/ps/pew301Search in Google Scholar

Niedzwiecki A., Roomi M.W., Kalinovsky T., Rath M. (2016). Anticancer efficacy of polyphenols and their combinations. Nutrients, 8: E552.10.3390/nu8090552Search in Google Scholar

Pemmer B., Roschger A., Wastl A., Hofstaetter J.G., Wobrauschek P., Simon R., Thaler H.W., Roschger P., Klaushofer K., Streli C. (2013). Spatial distribution of the trace elements zinc, strontium and lead in human bone tissue. Bone, 57: 184–193.10.1016/j.bone.2013.07.038Search in Google Scholar

Quinn T.M., Morel V. (2007). Microstructural modeling of collagen network mechanics and interactions with the proteoglycan gel in articular cartilage. Biomech. Model. Mechanobiol., 6: 73–82.10.1007/s10237-006-0036-zSearch in Google Scholar

Reeves P.G., Nielsen F.H., Fahey Jr. G.C. (1993). AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr., 123: 1939–1951.10.1093/jn/123.11.1939Search in Google Scholar

Shen C.L., Yeh J.K., Cao J.J., Chyu M.C., Wang J.S. (2011). Green tea and bone health: Evidence from laboratory studies. Pharmacol. Res., 64: 155–161.10.1016/j.phrs.2011.03.012Search in Google Scholar

Shen C.L., Chyu M.C., Wang J.S. (2013). Tea and bone health: steps forward in translational nutrition. Am. J. Clin. Nutr., 98: 1694S–1699S.10.3945/ajcn.113.058255Search in Google Scholar

Sheng J., Qu X., Zhang X., Zhai Z., Li H., Liu X., Li H., Liu G., Zhu Z., Hao Y., Qin A., Dai K. (2014). Coffee, tea, and the risk of hip fracture: a meta-analysis. Osteoporos. Int., 25: 141–150.10.1007/s00198-013-2563-7Search in Google Scholar

Suvara S.K., Layton C., Bancroft J.D. (2013). Bancroft’s theory and practice of histological techniques. Edinburgh, Churchill Livingstone, 7th ed., pp. 654.Search in Google Scholar

Śliwa E. (2010). 2-Oxoglutaric acid administration diminishes fundectomy-induced osteopenia in pigs. J. Anim. Physiol. Anim. Nutr., 94: e86–e95.10.1111/j.1439-0396.2009.00985.xSearch in Google Scholar

Śliwa E., Kowalik S., Tatara M.R., Krupski W., Majcher P., Łuszczewska-Sierakowska I., Pierzynowski S.G., Studziński T. (2005). Effect of alpha-ketoglutarate (AKG) given to pregnant sows on development of humerus and femur in newborns. Bull. Vet. Instit. Pulawy., 49: 117–120.Search in Google Scholar

Śliwa E., Tatara M.R., Nowakowski H., Pierzynowski S.G., Studziński T. (2006). Effect of maternal dexamethasone and alpha-ketoglutarate administration on skeletal development during the last three weeks of prenatal life in pigs. J. Matern. Fetal Neonatal Med., 19: 489–493.10.1080/14767050600850381Search in Google Scholar

Tomaszewska E., Dobrowolski P., Siwicki A. (2012 a). Maternal treatment with dexa-methasone at minimal therapeutic doses inhibits neonatal bone development in a gender-dependent manner. Livest. Sci., 146: 175–182.10.1016/j.livsci.2012.03.008Search in Google Scholar

Tomaszewska E., Dobrowolski P., Wydrych J. (2012 b). Postnatal administration of 2-oxoglutaric acid improves articular and growth plate cartilages and bone tissue morphology in pigs prenatally treated with dexamethasone. J. Physiol. Pharmacol., 63: 547–554.Search in Google Scholar

Tomaszewska E., Dobrowolski P., Puzio I. (2013). Morphological changes of the cartilage and bone in newborn piglets evoked by experimentally induced glucocorticoid excess during pregnancy. J. Anim. Physiol. Anim. Nutr., 97: 785–796.10.1111/j.1439-0396.2012.01319.xSearch in Google Scholar

Tomaszewska E., Winiarska-Mieczan A., Dobrowolski P. (2015 a). The lack of protective effects of tea supplementation on liver and jejunal epithelium in adult rats exposed to cadmium and lead. Environ. Toxicol. Pharmacol., 40: 708–714.10.1016/j.etap.2015.09.00226410089Search in Google Scholar

Tomaszewska E., Winiarska-Mieczan A., Dobrowolski P. (2015 b). Hematological and serum biochemical parameters of blood in adolescent rats and histomorphological changes in the jejunal epithelium and liver after chronic exposure to cadmium and lead in the case of supplementation with green tea vs black, red or white tea. Exp. Toxicol. Pathol., 67: 331–339.10.1016/j.etp.2015.02.00525837382Search in Google Scholar

Tomaszewska E., Dobrowolski P., Winiarska-Mieczan A., Kwiecień M., Tomczyk A., Muszyński S., Radzki R. (2016). Alteration in bone geometric and mechanical properties, histomorphometrical parameters of trabecular bone, articular cartilage and growth plate in adolescent rats after chronic co-exposure to cadmium and lead in the case of supplementation with green, black, red and white tea. Environ. Toxicol. Pharmacol., 46: 36–44.10.1016/j.etap.2016.06.027Search in Google Scholar

Tomaszewska E., Dobrowolski P., Winiarska-Mieczan A., Kwiecień M., Tomczyk A., Muszyński S. (2017 a). The effect of tannic acid on the bone tissue of adult male Wistar rats exposed to cadmium and lead. Exp. Toxicol. Pathol., 69: 131–141.10.1016/j.etp.2016.12.00327989570Search in Google Scholar

Tomaszewska E., Kwiecień M., Muszyński S., Dobrowolski P., Kasperek K., Blicharski T., Jeżewska-Witkowska G., Grela E. R. (2017 b). Long-bone properties and development are affected by caponisation and breed in Polish fowls. Brit. Poultry Sci., 58: 312–318.10.1080/00071668.2017.128077028102084Search in Google Scholar

WHO (1992). Environmental health criteria 134: Cadmium. Geneva, World Health Organization, pp. 280.Search in Google Scholar

Zhang Z.F., Yang J.L., Jiang H.C., Lai Z., Wu Z., Liu Z.X. (2017). Updated association of tea consumption and bone mineral density: A meta-analysis. Medicine, 96: e6437.10.1097/MD.0000000000006437Search in Google Scholar

eISSN:
2300-8733
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine