Accesso libero

Comparison of Two Methods for the Estimation of Stability of Copper(II) Bis-Complexes with Aromatic Ligands Relevant to Alzheimer’s Disease



1. Kowalik-Jankowska T, Ruta-Dolejsz M, Wisniewska K, Lankiewicz L, Kozlowski H. Possible involvement of copper(II) in Alzheimer disease. Environ Health Perspect 2002;110(Suppl 5):869-70. PMID: 1242614910.1289/ehp.02110s5869Search in Google Scholar

2. Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR. Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci 1998;158:47-52. doi: 10.1016/s0022-510x(98)00092-610.1016/S0022-510X(98)00092-6Search in Google Scholar

3. Bocca B, Forte G, Petrucci F, Pino A, Marchione F, Bomboi G, Senofonte O, Giubilei F, Alimonti A. Monitoring of chemical elements and oxidative damage in patients affected by Alzheimer’s disease. Ann Ist Super Sanita 2005;41:197-203. PMID: 16244393Search in Google Scholar

4. Brewer GJ. The risks of copper toxicity contributing to cognitive decline in the aging population and to Alzheimer’s disease. J Am Coll Nutr 2009;28:238-42. PMID: 2015059610.1080/07315724.2009.1071977720150596Search in Google Scholar

5. Brewer GJ, Newsome DA. Copper Proof: How Chronic Copper Toxicity is Causing the Epidemic of Alzheimer’s Disease and Dementia. Ann Arbor: George J. Brewer Inc; 2009.Search in Google Scholar

6. Sparks D, Friedland R, Retanceska S, Schreurs BG, Shi J, Perry G, Smith MA, Sharma A, Derosa S, Ziolkowski C, Stankovic G. Trace copper levels in the drinking water, but not zinc of aluminium, infl uence CNS Alzheimer’s like pathology. J Nutr Health Aging 2006;10:247-54. PMID: 16886094Search in Google Scholar

7. Waldman M, Lamb M. Dying for a Hamburger: Modern Meat Processing and the Epidemic of Alzheimer’s Diesease. New York (NY): Thomas Dunne Books, St. Martin’s Press; 2004.Search in Google Scholar

8. Sinha R, Cross AJ, Graubard BI, Leitzmann MF, Schatzkin A. Meat intake and mortality: A perspective study of over half a million people. Arch Intern Med 2009;169:562-71. doi: 10.1001/archinternmed.2009.610.1001/archinternmed.2009.6280308919307518Search in Google Scholar

9. Morris MC, Evans DA, Tangney CC, Benias JL, Schneider JA, Wilson RS, Scherr PA. Dietary copper and high saturated and trans fat intakes associated with cognitive decline. Arch Neurol 2006;63:1085-8. doi: 10.1001/archneur.63.8.108510.1001/archneur.63.8.108516908733Search in Google Scholar

10. Masters CL, Simms G, Weinman A, Multhaup G, McDonald BL, Beyreuther K. Amyloid plaque core protein in Alzheimer diesease and Down syndrome. Proc Natl Acad Sci USA 1985;82:4245-9. PMID: 315902110.1073/pnas.82.12.42453979733159021Search in Google Scholar

11. Esch F, Keim PS, Beattie EC, Blacher RW, Culwell AR, Oltersdorf T, McClure D, Ward PJ. Cleavage of amyloid beta peptide during constitutive processing of its precursor. Science 1990;244:1122-4. doi: 10.1126/science.211158310.1126/science.21115832111583Search in Google Scholar

12. Otvos LJ, Szendrei GI, Lee VM, Mantsch HH. Human and rodent Alzheimer β-amyloid peptides acquire distinct conformations in membrane-mimicking solvents. Eur J Biochem 1993;211:249-57. doi: 10.1111/j.1432-1033.1993. tb19893.xSearch in Google Scholar

13. Hou L, Zagorski MG. NMR reveals anomalous copper(II) binding to amyloid Aβ peptide of Alzheimer’s disease. J Am Chem Soc 2006;128:9260-1. doi: 10.1021/ja046032u10.1021/ja046032u16848423Search in Google Scholar

14. Innocenti M, Salvietti E, Guidotti M, Casini A, Bellandi S, Foresti ML, Gabbiani C, Pozzi A, Zatta P, Messori L. Trace copper(II) and zinc(II) ions drastically modify the aggregation behavior of amyloid-β1-42: An AFM study. J Alzheimer’s Dis 2010;19:1323-9. doi: 10.3233/JAD-2010-133810.3233/JAD-2010-133820061619Search in Google Scholar

15. Huang X, Atwood CS, Hartshorn MA, Multhaup G, Goldstein LE, Scarpa RC, Cuajungco MP, Gray DN, Lim J, Moir RD, Tanzi RE, Bush AI. The Aβ peptide of Alzheimer’s disease directly produces hydrogen peroxide through metal ion reduction. Biochemirsty 1999;38:7609-16. doi: 10.1021/ bi990438f10.1021/bi990438f10386999Search in Google Scholar

16. Opazo C, Ruiz FH, Inestrosa NC. Amyloid-β-peptide reduces copper(II) to copper(I) independent of its aggregation state. Biol Res 2000;33:125-31. PMID: 1569327910.4067/S0716-9760200000020001215693279Search in Google Scholar

17. Da Silva GFZ, Ming LJ. Alzheimer’s disease related copper(II)-β-amyloid peptide exhibits phenol monooxygenase and catechol oxidase activities. Angew Chem Int Ed 2005;44:5501-4. doi: 10.1002/anie.20050101310.1002/anie.20050101316052638Search in Google Scholar

18. Ferrada E, Arancibia V, Loeb B, Norambuena E, Olea-Azar C, Huidobro-Toro JP. Stoichiometry and conditional stability constants of Cu(II) or Zn(II) clioquinol complexes; implications for Alzheimer’s and Huntington’s disease therapy. Neurotoxicology 2007;28:445-9. doi: 10.1016/j. neuro.2007.02.004Search in Google Scholar

19. Lim S, Paterson BM, Fodero-Tavoletti MT, O’Keefe GJ, Cappai R, Barnham KJ, Villemagne VL, Donnelly PS. A copper radiopharmaceutical for diagnostic imaging of Alzheimer’s disease: a bis(thiosemicarbazonato)copper(II) complex that binds to amyloid-beta plaques. Chem Commun (Camb) 2010;46:5437-9. doi: 10.1039/c0cc01175d10.1039/c0cc01175d20556304Search in Google Scholar

20. Rodriguez-Rodriguez C, de Groot NS, Rimola A, Alvarez- Larena A, Lloveras V, Vidal-Gancedo J, Ventura S, Vendrell J, Sodupe M, Gonzalez-Duarte P. Design, selection, and characterization of thioflavin-based intercalation compounds with metal chelating properties for application in Alzheimer’s disease. J Am Chem Soc 2009;131:1436-51. doi: 10.1021/ja806062g.10.1021/ja806062g19133767Search in Google Scholar

21. Rimola A, Ali-Torres J, Rodriguez-Rodriguez C, Poater J, Matito E, Sola M, Sodupe M. Ab initio design of chelating ligands relevant to Alzheimer’s disease: Influence of metalloaromaticity. J Phys Chem A 2011;115:12659-66. doi: 10.1021/jp203465h10.1021/jp203465h21699142Search in Google Scholar

22. Raos N, Miličević A. Estimation of stability constants of coordination compounds using models based on topological indices. Arh Hig Rada Toksikol 2009;60:123-8. doi: 10.2478/10004-1254-60-2009-192310.2478/10004-1254-60-2009-192319329384Search in Google Scholar

23. Miličević A, Raos N. Estimation of stability constants by graph-theoretical models. Binding of amino acids to copper(II) and nickel(II) complexes of iminodiacetates and pyridyl derivatives of aspartic acid. Int J Chem Model 2008;1:395-403.Search in Google Scholar

24. Miličević A, Branica G, Raos N. Irving-Williams order in the framework of connectivity index 3χv enables simultaneous prediction of stability constants of bivalent transition metal complexes. Molecules 2011;16:1103-12. doi: 10.3390/ molecules1602110310.3390/molecules16021103625963721270730Search in Google Scholar

25. Miličević A, Raos N. Modeling of stability constants of mono-complexes of La3+, Ce3+, Pr3+, and Nd3+ with carboxylic acids in water-dioxane solutions by using connectivity index 3χv. Chem Phys Lett 2012;528:63-7. doi: 10.1016/j. cplett.2012.01.023Search in Google Scholar

26. Herges R. Topology in chemistry: designing Mobius molecules. Chem Rev 2006;106:4820-42. doi: 10.1021/ cr050542510.1021/cr050542517165676Search in Google Scholar

27. Mauksch M, Tsogoeva SB. Demonstration of “Mobius” aromaticity in planar metallacycles. Chem Eur J 2010;16:7843-51. doi: 10.1002/chem.20100039610.1002/chem.20100039620496358Search in Google Scholar

28. Tetko IV, Gasteiger J, Todeschini R, Mauri A, Livingstone D, Ertl P, Palyulin VA, Radchenko EV, Zefirov NS, Makarenko AS, Tanchuk VY, Prokopenko VV. Virtual computational chemistry laboratory-design and description. J Comput Aid Mol Des 2005;19:453-63. doi: 10.1007/s10822-005-8694-y10.1007/s10822-005-8694-y16231203Search in Google Scholar

29. VCCLAB, Virtual Computational Chemistry Laboratory [displayed 30 August 2013]. Available at http://www.vcclab. orgSearch in Google Scholar

30. NCI/CADD Group. Online SMILES Translator and Structure File Generator [displayed 30 August 2013]. Available at in Google Scholar

31. Randić M. On history of the Randić index and emerging hostility toward chemical graph theory. MATCH Commun Math Comput Chem 2008;59:5-124.Search in Google Scholar

32. Kier LB, Hall LH. Molecular connectivity VII: specifi c treatment to heteroatoms. J Pharm Sci 1976;65:1806-9. PMID: 103266710.1002/jps.26006512281032667Search in Google Scholar

33. Kier LB, Hall LH. Molecular Connectivity in Structure- Activity Analysis. New York (NY): John Wiley & Sons; 1986.Search in Google Scholar

34. Kier LB, Hall LH. Molecular Connectivity in Chemistry and Drug Research. New York (NY): Academic Press; 1976.Search in Google Scholar

35. Randić M. On characterization of molecular branching. J Am Chem Soc 1975;97:6609-15. doi: 10.1021/ ja00856a00110.1021/ja00856a001Search in Google Scholar

36. Lučić B, Trinajstić N. Comparison between the sumconnectivity index and product-connectivity index for benzenoid hydrocarbons. Chem Phys Lett 2009;475:146-8. doi: 10.1016/j.cplett.2009.05.02210.1016/j.cplett.2009.05.022Search in Google Scholar

37. Lučić B, Trinajstić N. Multivariate regression outperforms several robust architectures of neural networks in QSAR modeling. J Chem Inf Comput Sci 1999;39:121-32. doi: 10.1021/ci980090f 10.1021/ci980090fSearch in Google Scholar

Inglese, Slovenian
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Medicine, Basic Medical Science, other