Accesso libero

Depth Data Reconstruction Based on Gaussian Mixture Model

Cybernetics and Information Technologies's Cover Image
Cybernetics and Information Technologies
Special issue with selection of extended papers from 6th International Conference on Logistic, Informatics and Service Science LISS’2016


Depth data is an effective tool to locate the intelligent agent in space because it accurately records the 3D geometry information on the surface of the scanned object, and is not affected by factors like shadow and light. However, if there are many planes in the work scene, it is difficult to identify objects and process the resulting huge amount of data. In view of this problem and targeted at object calibration, this paper puts forward a depth data calibration method based on Gauss mixture model. The method converts the depth data to point cloud, filters the noise and collects samples, which effectively reduces the computational load in the following steps. Besides, the authors cluster the point cloud vector with the Gaussian mixture model, and obtain the target and background planes by using the random sampling consensus algorithm to fit the planes. The combination of target Region Of Intelligent agent (ROI) and point cloud significantly reduces the computational load and improves the computing speed. The effect and accuracy of the algorithm is verified by the test of the actual object.

Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Computer Sciences, Information Technology