Accès libre

Batch removal of Pb (ΙΙ) ions from aqueous medium using gamma-Al2O3 nanoparticles/ethyl cellulose adsorbent fabricated via electrospinning method: An equilibrium isotherm and characterization study

À propos de cet article


The aim of the present work is to study the efficiency of a biocompatible polymer-based adsorbent for the removal of Pb (II) ions whose devastating effects on people’s health is a matter of great concern from aqueous solution. In this study, ethyl cellulose and gamma-Al2O3 nanoparticles/ethyl cellulose electrospun adsorbents were prepared for the batch removal of Pb (II) ions from aqueous solution. Both samples were characterized using contact angle analysis, N2 adsorption/desorption technique, FT-IR and SEM. The Freundlich model (R-square = 0.935 and RMSD (%) = 6.659) and the Dubinin-Radushkevich model (R-square = 0.944 and RMSD (%) = 6.145) were found to be more reliable in predicting the experimental data from the adsorption of Pb (II) ions onto the electrospun gamma-Al2O3 nanoparticles/ethyl cellulose than the Langmuir model (R-square = 0.685 and RMSD (%) = 14.61) and also the Temkin model (R-square = 0.695 and RMSD (%) = 14.38).

4 fois par an
Sujets de la revue:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering