Accès libre

Artificial intelligence used in genome analysis studies

   | 25 avr. 2018
À propos de cet article

Citez

Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate. arXiv 2014: 1409.0473.BahdanauDChoKBengioYNeural machine translation by jointly learning to align and translatearXiv20141409.0473Search in Google Scholar

Hutter F, Hoos HH, Leyton-Brown K. Learning and intelligent optimization. (Berlin: Springer: 2011).HutterFHoosHHLeyton-BrownKLearning and intelligent optimizationBerlinSpringer2011Search in Google Scholar

Friedman N. Inferring cellular networks using probabilistic graphical models. Science 2004; 303: 799–805.10.1126/science.109406814764868FriedmanNInferring cellular networks using probabilistic graphical modelsScience200430379980514764868Open DOISearch in Google Scholar

Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: Data Mining, Inference and Prediction (Berlin: Springer: 2001).HastieTTibshiraniRFriedmanJThe Elements of Statistical Learning: Data Mining, Inference and PredictionBerlinSpringer200110.1007/978-0-387-21606-5Search in Google Scholar

Hamelryck T. Probabilistic models and machine learning in structural bioinformatics. Stat Methods Med Res 2009; 18: 505–526.1915316810.1177/0962280208099492HamelryckTProbabilistic models and machine learning in structural bioinformaticsStat Methods Med Res20091850552619153168Search in Google Scholar

Zien A. Engineering support vector machine kernels that recognize translation initiation sites. Bioinformatics 2000; 16: 799–807.1110870210.1093/bioinformatics/16.9.799ZienAEngineering support vector machine kernels that recognize translation initiation sitesBioinformatics20001679980711108702Search in Google Scholar

Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv 2015; 1502.03167.IoffeSSzegedyC2015Batch normalization: accelerating deep network training by reducing internal covariate shiftarXiv 2015; 1502.03167Search in Google Scholar

Bengio Y, Courville A, Vincent P. Representation learning: a review and new perspectives. Pattern Anal Mach Intell IEEE Trans 2013; 35: 1798–1828.10.1109/TPAMI.2013.50BengioYCourvilleAVincentPRepresentation learning: a review and new perspectivesPattern Anal Mach Intell IEEE Trans2013351798182823787338Open DOISearch in Google Scholar

Jain V, Murray JF, Roth F, Turaga S, Zhigulin V, Briggman KL, Helmstaedter MN, Denk W, Seung HS. Supervised learning of image restoration with convolutional networks. Int Conf Computer Vision. 2007; 1–8.JainVMurrayJFRothFTuragaSZhigulinVBriggmanKLHelmstaedterMNDenkWSeungHSSupervised learning of image restoration with convolutional networksInt Conf Computer Vision20071–810.1109/ICCV.2007.4408909Search in Google Scholar

Day N, Hemmaplardh A, Thurman RE, Stamatoyannopoulos JA, Noble WS. Unsupervised segmentation of continuous genomic data. Bioinformatics 2007; 23: 1424–1426.10.1093/bioinformatics/btm09617384021DayNHemmaplardhAThurmanREStamatoyannopoulosJANobleWSUnsupervised segmentation of continuous genomic dataBioinformatics2007231424142617384021Open DOISearch in Google Scholar

Hoffman MM. Unsupervised pattern discovery in human chromatin structure through genomic segmentation. Nat Methods 2012; 9: 473–476.2242649210.1038/nmeth.1937HoffmanMMUnsupervised pattern discovery in human chromatin structure through genomic segmentationNat Methods20129473476334053322426492Search in Google Scholar

Chapelle O, Schölkopf B, Zien A. Semi-supervised Learning (Cambridge Ma: MIT Press: 2006).ChapelleOSchölkopfBZienASemi-supervised LearningCambridge MaMIT Press200610.7551/mitpress/9780262033589.001.0001Search in Google Scholar

Ernst J, Kellis M. ChromHMM: automating chromatin-state discovery and characterization. Nat Methods. 2012; 9: 215–216.2237390710.1038/nmeth.1906ErnstJKellisMChromHMM: automating chromatin-state discovery and characterizationNat Methods20129215216357793222373907Search in Google Scholar

Chapelle O, Schölkopf B, Zien A. Semi-supervised Learning. (Cambridge MA: MIT Press: 2006).ChapelleOSchölkopfBZienASemi-supervised LearningCambridge MAMIT Press200610.7551/mitpress/9780262033589.001.0001Search in Google Scholar

Urbanowicz RJ, Granizo-Mackenzie A, Moore JH. An analysis pipeline with statistical and visualization-guided knowledge discovery for Michigan-style learning classifier systems. IEEE Comput Intell Mag 2012; 7: 35–45.2543154410.1109/MCI.2012.2215124UrbanowiczRJGranizo-MackenzieAMooreJHAn analysis pipeline with statistical and visualization-guided knowledge discovery for Michigan-style learning classifier systemsIEEE Comput Intell Mag201273545424400625431544Search in Google Scholar

Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Josofowicz R, Kaiser L, Kudlur M, Levenberg J. TensorFlow: large-scale machine learning on heterogeneous distributed systems. arXiv 2016; 1603.04467AbadiMAgarwalABarhamPBrevdoEChenZCitroCCorradoGSDavisADeanJDevinMGhemawatSGoodfellowIHarpAIrvingGIsardMJiaYJosofowiczRKaiserLKudlurMLevenbergJTensorFlow: large-scale machine learning on heterogeneous distributed systemsarXiv20161603.04467Search in Google Scholar

Xiong C, Merity S, Socher R. Dynamic memory networks for visual and textual question answering. arXiv 2016; 1603.01417.XiongCMeritySSocherRDynamic memory networks for visual and textual question answeringarXiv20161603.01417Search in Google Scholar

Xu R, Wunsch D II., Frank R. Inference of genetic regulatory networks with recurrent neural network models using particle swarm optimization. IEEE/ACM Trans Comput Biol Bioinformatics 2007; 4: 681–692.10.1109/TCBB.2007.1057XuRWunschD II.FrankRInference of genetic regulatory networks with recurrent neural network models using particle swarm optimizationIEEE/ACM Trans Comput Biol Bioinformatics2007468169217975278Open DOISearch in Google Scholar

Xu Y, Mo T, Feng Q, Zhong P, Lai M, Chang EI. Deep learning of feature representation with multiple instance learning for medical image analysis. IEEE Int Conf Acoustics, Speech, Signal Processing. 2014; 1626–1630.XuYMoTFengQZhongPLaiMChangEIDeep learning of feature representation with multiple instance learning for medical image analysisIEEE Int Conf Acoustics, Speech, Signal Processing20141626–163010.1109/ICASSP.2014.6853873Search in Google Scholar

Zeiler MD, Fergus R. Visualizing and understanding convolutional networks. (Berlin: Springer: 2014).ZeilerMDFergusRVisualizing and understanding convolutional networksBerlinSpringer201410.1007/978-3-319-10590-1_53Search in Google Scholar

Ng AY, Jordan MI. Advances in Neural Information Processing Systems. (Cabridge MA: MIT Press: 2002).NgAYJordanMIAdvances in Neural Information Processing SystemsCabridge MAMIT Press2002Search in Google Scholar

Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE Trans Evol Comput 1997; 1: 67–82.10.1109/4235.585893WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Trans Evol Comput199716782Open DOISearch in Google Scholar

Boser BE, Guyon IM, Vapnik VN. A Training Algorithm for Optimal Margin Classifiers. (NY: ACM Press: 1992).BoserBEGuyonIMVapnikVNA Training Algorithm for Optimal Margin ClassifiersNYACM Press199210.1145/130385.130401Search in Google Scholar

Noble WS. What is a support vector machine? Nature Biotech 2006; 24: 1565–1567.10.1038/nbt1206-1565NobleWSWhat is a support vector machine?Nature Biotech2006241565156717160063Open DOISearch in Google Scholar

Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks. International Conference on Artificial Intelligence and Statistics. 2010; 249–256.GlorotXBengioYUnderstanding the difficulty of training deep feedforward neural networksInternational Conference on Artificial Intelligence and Statistics2010249–256Search in Google Scholar

Troyanskaya OG, Dolinski K, Owen AB, Altman RB, Botstein DA. Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae). Proc Natl Acad Sci USA 2003; 100: 8348–8353.10.1073/pnas.0832373100TroyanskayaOGDolinskiKOwenABAltmanRBBotsteinDABayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae)Proc Natl Acad Sci USA20031008348835316623212826619Open DOISearch in Google Scholar

Friedman N, Linial M, Nachman I, Peer D. Using Bayesian networks to analyze expression data. J Comput Biol 2000; 7: 601–620.1110848110.1089/106652700750050961FriedmanNLinialMNachmanIPeerDUsing Bayesian networks to analyze expression dataJ Comput Biol2000760162011108481Search in Google Scholar

Koski TJ, Noble J. A review of Bayesian networks and structure learning. Math Applicanda 2012; 40: 51–103.KoskiTJNobleJA review of Bayesian networks and structure learningMath Applicanda20124051103Search in Google Scholar

Friedman N, Linial M, Nachman I, Pe’er D. Using Bayesian networks to analyze expression data. J Comput Biol 2000; 7: 601–620.1110848110.1089/106652700750050961FriedmanNLinialMNachmanIPe’erDUsing Bayesian networks to analyze expression dataJ Comput Biol2000760162011108481Search in Google Scholar

Koski TJ, Noble J. A review of bayesian networks and structure learning. Math Applicanda 2012; 40: 51–103.KoskiTJNobleJA review of bayesian networks and structure learningMath Applicanda2012405110310.14708/ma.v40i1.278Search in Google Scholar

Brown M. Using Dirichlet mixture priors to derive hidden Markov models for protein families. Int Conf Intelligent Systems Mol Biol 1993; 47-55.BrownMUsing Dirichlet mixture priors to derive hidden Markov models for protein familiesInt Conf Intelligent Systems Mol Biol19934755Search in Google Scholar

Keogh E, Mueen A. Encyclopedia of Machine Learning (Berlin: Springer: 2011).KeoghEMueenAEncyclopedia of Machine LearningBerlinSpringer2011Search in Google Scholar

Manning CD, Schütze H. Foundations of Statistical Natural Language Processing (Cambridge MA: MIT Press: 1999).ManningCDSchützeHFoundations of Statistical Natural Language ProcessingCambridge MAMIT Press1999Search in Google Scholar

Friedman N. Inferring cellular networks using probabilistic graphical models. Science. 2004; 303: 799–805.10.1126/science.109406814764868FriedmanNInferring cellular networks using probabilistic graphical modelsScience200430379980514764868Open DOISearch in Google Scholar

Hastie T, Tibshirani R.; Friedman, J. The Elements of Statistical Learning: Data mining, Inference and Prediction. (New York NY: Springer: 2001).HastieTTibshiraniRFriedmanJThe Elements of Statistical Learning: Data mining, Inference and PredictionNew York NYSpringer200110.1007/978-0-387-21606-5Search in Google Scholar

Yip KY, Cheng C, Gerstein M. Machine learning and genome annotation: a match meant to be? Genome biol 2013; 14:205.10.1186/gb-2013-14-5-20523731483YipKYChengCGersteinMMachine learning and genome annotation: a match meant to be?Genome biol201314205405378923731483Open DOISearch in Google Scholar

Day N, Hemmaplardh A, Thurman RE, Stamatoyannopoulos JA, Noble WS. Unsupervised segmentation of continuous genomic data. Bioinformatics. 2007; 23: 1424–1426.10.1093/bioinformatics/btm09617384021DayNHemmaplardhAThurmanREStamatoyannopoulosJANobleWSUnsupervised segmentation of continuous genomic dataBioinformatics2007231424142617384021Open DOISearch in Google Scholar

Boser BE, Guyon IM, Vapnik VN. A training algorithm for optimal margin classifiers. (Pittsburgh, PA: ACM Press: 1992).BoserBEGuyonIMVapnikVNA training algorithm for optimal margin classifiersPittsburgh, PAACM Press199210.1145/130385.130401Search in Google Scholar

Noble WS. What is a support vector machine? Nature Biotech 2006; 24: 1565–1567.10.1038/nbt1206-1565NobleWSWhat is a support vector machine?Nature Biotech2006241565156717160063Open DOISearch in Google Scholar

Hastie T, Tibshirani R, Friedman J, Franklin J. The elements of statistic learning: data mining, inference and prediction. Math Intell 2005; 27: 83–85.10.1007/BF02985802HastieTTibshiraniRFriedmanJFranklinJThe elements of statistic learning: data mining, inference and predictionMath Intell2005278385Open DOISearch in Google Scholar

He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image recognition. arXiv 2015; 1512.03385.HeKZhangXRenSSunJ2015Deep residual learning for image recognitionarXiv 2015; 1512.03385Search in Google Scholar

Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science 2006; 313: 504–507.10.1126/science.112764716873662HintonGESalakhutdinovRRReducing the dimensionality of data with neural networksScience200631350450716873662Open DOISearch in Google Scholar

Hinton GE, Osindero S, Teh Y-W. A fast learning algorithm for deep belief nets. Neural Comput 2006; 18: 1527–1554.1676451310.1162/neco.2006.18.7.1527HintonGEOsinderoSTehY-WA fast learning algorithm for deep belief netsNeural Comput2006181527155416764513Search in Google Scholar

LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521: 436-444.2601744210.1038/nature14539LeCunYBengioYHintonGDeep learningNature201552143644426017442Search in Google Scholar

Schmidhuber J. Deep learning in neural networks: An overview. Neural Networks 2015; 61: 85-117.10.1016/j.neunet.2014.09.003SchmidhuberJDeep learning in neural networks: An overviewNeural Networks2015618511725462637Open DOISearch in Google Scholar

Mamoshina P, Vieira A, Putin E, Zhavoronkov A (2016) Applications of deep learning in biomedicine. Mol Pharm 2016; 13: 1445–1454.10.1021/acs.molpharmaceut.5b0098227007977MamoshinaPVieiraAPutinEZhavoronkovA2016Applications of deep learning in biomedicineMol Pharm2016131445145427007977Open DOISearch in Google Scholar

Murphy KP (2012) Machine learning: a probabilistic perspective. (Cambridge MA: MIT Press: 2012).MurphyKP2012Machine learning: a probabilistic perspectiveCambridge MAMIT Press2012Search in Google Scholar

Rampasek L, Goldenberg A (2016) TensorFlow: biology’s gateway to deep learning? Cell Syst 2016; 2: 12–14.10.1016/j.cels.2016.01.00927136685RampasekLGoldenbergA2016TensorFlow: biology’s gateway to deep learning?Cell Syst20162121427136685Open DOISearch in Google Scholar

Salakhutdinov R, Hinton G (2012) An efficient learning procedure for deep Boltzmann machines. Neural Comput 2012; 24: 1967–2006.2250996310.1162/NECO_a_00311SalakhutdinovRHintonG2012An efficient learning procedure for deep Boltzmann machinesNeural Comput2012241967200622509963Search in Google Scholar

Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 2015; 61: 85–117.10.1016/j.neunet.2014.09.00325462637SchmidhuberJ2015Deep learning in neural networks: an overviewNeural Netw20156185117Open DOISearch in Google Scholar

Snoek J, Larochelle H, Adams RP. Practical bayesian optimization of machine learning algorithms. In Advances in neural information processing systems, pp 2951–2959. (Cambridge MA: MIT Press: 2012).SnoekJLarochelleHAdamsRPPractical bayesian optimization of machine learning algorithmsIn Advances in neural information processing systems29512959Cambridge MAMIT Press2012Search in Google Scholar

Spencer M, Eickholt J, Cheng J. A deep learning network approach to ab initio protein secondary structure prediction. IEEE/ACM Trans Comput Biol Bioinformatics 2015; 12: 103–112.10.1109/TCBB.2014.2343960SpencerMEickholtJChengJA deep learning network approach to ab initio protein secondary structure predictionIEEE/ACM Trans Comput Biol Bioinformatics201512103112434807225750595Open DOISearch in Google Scholar

Eickholt J, Cheng J. Predicting protein residue-residue contacts using deep networks and boosting. Bioinformatics 2012; 28: 3066–3072.2304756110.1093/bioinformatics/bts598EickholtJChengJPredicting protein residue-residue contacts using deep networks and boostingBioinformatics20122830663072350949423047561Search in Google Scholar

Eickholt J, Cheng J. DNdisorder: predicting protein disorder using boosting and deep networks. BMC Bioinformatics 2013; 14: 88.10.1186/1471-2105-14-8823497251EickholtJChengJDNdisorder: predicting protein disorder using boosting and deep networksBMC Bioinformatics20131488359962823497251Open DOISearch in Google Scholar

Gawehn E, Hiss JA, Schneider G. Deep learning in drug discovery. Mol Informatics 2016; 35: 3–14.10.1002/minf.201501008GawehnEHissJASchneiderGDeep learning in drug discoveryMol Informatics20163531427491648Open DOISearch in Google Scholar

Che Z, Purushotham S, Khemani R, Liu Y. Distilling knowledge from deep networks with applications to healthcare domain. arXiv 2015; 1512.03542.CheZPurushothamSKhemaniRLiuYDistilling knowledge from deep networks with applications to healthcare domainarXiv20151512.03542Search in Google Scholar

Bastien F, Lamblin P, Pascanu R, Bergstra J, Goodfellow I, Bergeron A, Bouchard N, Warde-Farley D, Bengio Y. Theano: new features and speed improvements. arXiv 2012; 1211.5590BastienFLamblinPPascanuRBergstraJGoodfellowIBergeronABouchardNWarde-FarleyDBengioYTheano: new features and speed improvementsarXiv20121211.5590Search in Google Scholar

Bengio Y. Practical recommendations for gradient-based training of deep architectures. In Neural networks: tricks of the trade, Montavon G, Orr G, Müller K-R (Kelley DR, Snoek J, Rinn J. Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks. Mol Syst Biol. 2016; 12(7): 878.BengioYPractical recommendations for gradient-based training of deep architecturesNeural networks: tricks of the trade, Montavon G, Orr G, Müller K-R (Kelley DR, Snoek J, Rinn J. Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks. Mol Syst Biol201612787810.1007/978-3-642-35289-8_26Search in Google Scholar

Kingma DP, Welling M. Auto-encoding variational bayes. arXiv 2013; 1312.6114.KingmaDPWellingMAuto-encoding variational bayes20131312.6114Search in Google Scholar

Kingma D, Ba J. Adam: a method for stochastic optimization. arXiv 2014; 1412.6980.KingmaDBaJAdam: a method for stochastic optimization20141412.6980Search in Google Scholar

Leung MKK, Xiong HY, Lee LJ, Frey BJ. Deep learning of the tissue-regulated splicing code. Bioinformatics 2014; 30: 121–129.10.1093/bioinformatics/btu277LeungMKKXiongHYLeeLJFreyBJDeep learning of the tissue-regulated splicing codeBioinformatics201430121129405893524931975Open DOISearch in Google Scholar

Simonyan K, Vedaldi A, Zisserman A. Deep inside convolutional networks: visualising image classification models and saliency maps. arXiv 2013; 1312.6034.SimonyanKVedaldiAZissermanADeep inside convolutional networks: visualising image classification models and saliency mapsarXiv20131312.6034Search in Google Scholar

Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv 2014; 1409.1556.SimonyanKZissermanA2014Very deep convolutional networks for large-scale image recognitionarXiv 2014; 1409.1556Search in Google Scholar

Koh PW, Pierson E, Kundaje A. Denoising genome-wide histone ChIP-seq with convolutional neural networks. Bioinformatics 2017; 33(14): 225–233.10.1093/bioinformatics/btx243KohPWPiersonEKundajeADenoising genome-wide histone ChIP-seq with convolutional neural networksBioinformatics20173314225233587071328881977Open DOISearch in Google Scholar

Dahl GE, Jaitly N, Salakhutdinov R. Multi-task neural networks for QSAR predictions. arXiv 2014; 1406.1231.DahlGEJaitlyNSalakhutdinovRMulti-task neural networks for QSAR predictionsarXiv20141406.1231Search in Google Scholar

Lipton ZC (2015) A critical review of recurrent neural networks for sequence learning. arXiv 2015; 1506.00019.LiptonZC2015A critical review of recurrent neural networks for sequence learningarXiv 2015; 1506.00019Search in Google Scholar

Lipton ZC, Kale DC, Elkan C, Wetzell R (2015) Learning to diagnose with LSTM recurrent neural networks. arXiv 2015; 1511.03677.LiptonZCKaleDCElkanCWetzellR2015Learning to diagnose with LSTM recurrent neural networksarXiv 2015; 1511.03677Search in Google Scholar

Donahue J, Jia Y, Vinyals O, Hoffman J, Zhang N, Tzeng E, Darrell T. Decaf: a deep convolutional activation feature for generic visual recognition. arXiv 2013; 1310.1531.DonahueJJiaYVinyalsOHoffmanJZhangNTzengEDarrellTDecaf: a deep convolutional activation feature for generic visual recognitionarXiv 2013; 1310.1531Search in Google Scholar

Kraus OZ, Ba LJ, Frey B. Classifying and segmenting microscopy images using convolutional multiple instance learning. arXiv 2015; 1511.05286v1.KrausOZBaLJFreyBClassifying and segmenting microscopy images using convolutional multiple instance learningarXiv 2015; 1511.05286v1Search in Google Scholar

LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521: 436–444.2601744210.1038/nature14539LeCunYBengioYHintonGDeep learningNature201552143644426017442Search in Google Scholar

Lee B, Lee T, Na B, Yoon S. DNA-level splice junction prediction using deep recurrent neural networks. arXiv 2015; 1512.05135LeeBLeeTNaBYoonSDNA-level splice junction prediction using deep recurrent neural networks20151512.05135Search in Google Scholar

Park Y, Kellis M (2015) Deep learning for regulatory genomics. Nat Biotechnol 2015;33: 825–826.2625213910.1038/nbt.3313ParkYKellisM2015Deep learning for regulatory genomicsNat Biotechnol20153382582626252139Search in Google Scholar

Libbrecht MW, Noble WS (2015) Machine learning applications in genetics and genomics. Nat Rev Genet 2015; 16: 321–332.2594824410.1038/nrg3920LibbrechtMWNobleWS2015Machine learning applications in genetics and genomicsNat Rev Genet201516321332520430225948244Search in Google Scholar

Sutskever I, Vinyals O, Le QV. Advances in neural information processing systems. (Cambridge MA: MIT Press: 2014).SutskeverIVinyalsOLeQVAdvances in neural information processing systemsCambridge MAMIT Press2014Search in Google Scholar

Wasson T, Hartemink AJ. An ensemble model of competitive multi-factor binding of the genome. Genome Res 2009; 19: 2102–2112.WassonTHarteminkAJAn ensemble model of competitive multi-factor binding of the genomeGenome Res2009192102211210.1101/gr.093450.109277558619720867Search in Google Scholar

Yip KY, Cheng C, Gerstein M. Machine learning and genome annotation: a match meant to be? Genome Biol 2013; 14: 205.10.1186/gb-2013-14-5-20523731483YipKYChengCGersteinMMachine learning and genome annotation: a match meant to be?Genome Biol201314205405378923731483Open DOISearch in Google Scholar

Zhou J, Troyanskaya OG (2015) Predicting effects of noncoding variants with deep learning based sequence model. Nat Methods 2015; 12: 931–934.2630184310.1038/nmeth.3547ZhouJTroyanskayaOG2015Predicting effects of noncoding variants with deep learning based sequence modelNat Methods201512931934476829926301843Search in Google Scholar

Swan AL, Mobasheri A, Allaway D, Liddell S, Bacardit J (2013) Application of machine learning to proteomics data: classification and biomarker identification in postgenomics biology. Omics 2013; 17: 595–610.10.1089/omi.2013.001724116388SwanALMobasheriAAllawayDLiddellSBacarditJ2013Application of machine learning to proteomics data: classification and biomarker identification in postgenomics biologyOmics201317595610383743924116388Open DOISearch in Google Scholar

Alipanahi B, Delong A, Weirauch MT, Frey BJ (2015) Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat Biotechnol 2015; 33: 831–838.10.1038/nbt.330026213851AlipanahiBDelongAWeirauchMTFreyBJ2015Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learningNat Biotechnol20153383183826213851Open DOISearch in Google Scholar

Zhang J, White NM, Schmidt HK. Integrate: gene fusion discovery using whole genome and transcriptome data. Genome Res 2016; 26(1):108–118.10.1101/gr.186114.11426556708ZhangJWhiteNMSchmidtHKIntegrate: gene fusion discovery using whole genome and transcriptome dataGenome Res2016261108118469174326556708Open DOISearch in Google Scholar

Degroeve S, Baets BD, de Peer YV, Rouz P. Feature subset selection for splice site prediction. Bioinformatics. 2002; 18: S75–S83.10.1093/bioinformatics/18.suppl_2.S7512385987DegroeveSBaetsBDde PeerYVRouzPFeature subset selection for splice site predictionBioinformatics200218S75S83Open DOISearch in Google Scholar

Wasson, T., Hartemink, A. J. An ensemble model of competitive multi-factor binding of the genome. Genome Res 2009;19: 2102–2112.WassonT.HarteminkA. JAn ensemble model of competitive multi-factor binding of the genomeGenome Res2009192102211210.1101/gr.093450.109277558619720867Search in Google Scholar

Lanckriet GRG, Bie TD, Cristianini N, Jordan MI, Noble WS. A statistical framework for genomic data fusion. Bioinformatics 2004; 20: 2626–2635.1513093310.1093/bioinformatics/bth294LanckrietGRGBieTDCristianiniNJordanMINobleWSA statistical framework for genomic data fusionBioinformatics2004202626263515130933Search in Google Scholar

Pavlidis P, Weston J, Cai J, Noble WS. Learning gene functional classifications from multiple data types. J Computat Biol 2002; 9: 401–411.10.1089/10665270252935539PavlidisPWestonJCaiJNobleWSLearning gene functional classifications from multiple data typesJ Computat Biol2002940141112015889Open DOISearch in Google Scholar

Picardi E, Pesole G. Computational methods for ab initio and comparative gene finding. Meth Mol Biol 2010; 609: 269–284.10.1007/978-1-60327-241-4_16PicardiEPesoleGComputational methods for ab initio and comparative gene findingMeth Mol Biol201060926928420221925Open DOISearch in Google Scholar

Degroeve S, Baets BD, de Peer YV, Rouzé P. Feature subset selection for splice site prediction. Bioinformatics 2002; 18: S75–S83.10.1093/bioinformatics/18.suppl_2.S7512385987DegroeveSBaetsBDde PeerYVRouzéPFeature subset selection for splice site predictionBioinformatics200218S75S83Open DOISearch in Google Scholar

Ouyang Z, Zhou Q, Wong HW. ChIP-Seq of transcription factors predicts absolute and differential gene expression in embryonic stem cells. PNAS USa. 2009; 106: 21521–21526.10.1073/pnas.0904863106OuyangZZhouQWongHWChIP-Seq of transcription factors predicts absolute and differential gene expression in embryonic stem cellsPNAS USa20091062152121526278975119995984Open DOISearch in Google Scholar

Chen Y, Li Y, Narayan R, Subramanian A, Xie X. Gene expression inference with deep learning Bioinformatics 2016; 32: 1832–1839.ChenYLiYNarayanRSubramanianAXieXGene expression inference with deep learning Bioinformatics2016321832183910.1093/bioinformatics/btw074490832026873929Search in Google Scholar

Troyanskaya OG, Dolinski K, Owen AB, Altman RB, Botstein D. A Bayesian framework for combining heterogeneous data sources for gene function prediction (in S. cerevisiae). PNAS USA 2003; 100: 8348–8353.10.1073/pnas.0832373100TroyanskayaOGDolinskiKOwenABAltmanRBBotsteinDA Bayesian framework for combining heterogeneous data sources for gene function prediction (in S. cerevisiae)PNAS USA200310083488353Open DOISearch in Google Scholar

Upstill-Goddard R, Eccles D, Fliege J, Collins A. Machine learning approaches for the discovery of gene–gene interactions in disease data. Brief Bioinform 2013; 14: 251–260.2261111910.1093/bib/bbs024Upstill-GoddardREcclesDFliegeJCollinsAMachine learning approaches for the discovery of gene–gene interactions in disease dataBrief Bioinform201314251260Search in Google Scholar

Urbanowicz R, Granizo-Mackenzie D, Moore J. An expert knowledge guided michigan-style learning classifier system for the detection and modeling of epistasis and genetic heterogeneity. Proc Parallel Problem Solving From Nature 2012; 12: 266–275.UrbanowiczRGranizo-MackenzieDMooreJAn expert knowledge guided michigan-style learning classifier system for the detection and modeling of epistasis and genetic heterogeneityProc Parallel Problem Solving From Nature20121226627510.1007/978-3-642-32937-1_27Search in Google Scholar

Angermueller C, Lee H, Reik W, Stegle O. Accurate prediction of single-cell DNA methylation states using deep learning. Genome Biol 2017; 18: 67.10.1186/s13059-017-1189-z28395661AngermuellerCLeeHReikWStegleOAccurate prediction of single-cell DNA methylation states using deep learningGenome Biol20171867Open DOISearch in Google Scholar

Ernst J, Kellis M. ChromHMM: automating chromatin-state discovery and characterization. Nature Methods 2012;9: 215–216 (2012).2237390710.1038/nmeth.1906ErnstJKellisMChromHMM: automating chromatin-state discovery and characterizationNature Methods201292152162012Search in Google Scholar

Fraser AG, Marcotte EM. A probabilistic view of gene function. Nature Genet 2004; 36: 559–564.10.1038/ng1370FraserAGMarcotteEMA probabilistic view of gene functionNature Genet200436559564Open DOISearch in Google Scholar

Battle A, Khan Z, Wang SH, Mitrano A, Ford MJ, Pritchard JK, Gilad Y (2015) Genomic variation. Impact of regulatory variation from RNA to protein. Science 2015; 347: 664–667.2565724910.1126/science.1260793BattleAKhanZWangSHMitranoAFordMJPritchardJKGiladY2015Genomic variation. Impact of regulatory variation from RNA to proteinScience2015347664667Search in Google Scholar

Kelley DR, Snoek J, Rinn JL. Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome Res 2016; 26: 990-99.10.1101/gr.200535.11527197224KelleyDRSnoekJRinnJLBasset: learning the regulatory code of the accessible genome with deep convolutional neural networksGenome Res20162699099Open DOISearch in Google Scholar

Sønderby SK, Winther O. Protein secondary structure prediction with long short term memory networks. arXiv 2014; 1412.78.SønderbySKWintherOProtein secondary structure prediction with long short term memory networks20141412.78Search in Google Scholar

Beer MA, Tavazoie S. Predicting gene expression from sequence. Cell 2004; 117: 185–198. Heintzman N. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nature Genet 2007; 39: 311–318.1508425710.1016/S0092-8674(04)00304-6BeerMATavazoieSPredicting gene expression from sequenceCell2004117185198Heintzman N. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nature Genet 2007; 39: 311–318Search in Google Scholar

Pique-Regi R. Accurate inference of transcription factor binding from DNA sequence and chromatin accessibility data. Genome Res. 2011;21: 447–455.2110690410.1101/gr.112623.110Pique-RegiR.Accurate inference of transcription factor binding from DNA sequence and chromatin accessibility dataGenome Res201121447455304485821106904Search in Google Scholar

Qiu J, Noble WS. Predicting co-complexed protein pairs from heterogeneous data. PLoS Comput Biol 2008; 4: e1000054.1842137110.1371/journal.pcbi.1000054QiuJNobleWSPredicting co-complexed protein pairs from heterogeneous dataPLoS Comput Biol20084e1000054227531418421371Search in Google Scholar

Ramaswamy S. Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci USA 2001; 98: 15149–15154.10.1073/pnas.211566398RamaswamySMulticlass cancer diagnosis using tumor gene expression signaturesProc Natl Acad Sci USA20019815149151546499811742071Open DOISearch in Google Scholar

Saigo H, Vert JP, Akutsu T. Optimizing amino acid substitution matrices with a local alignment kernel. BMC Bioinformatics 2006; 7: 246.1667738510.1186/1471-2105-7-246SaigoHVertJPAkutsuTOptimizing amino acid substitution matrices with a local alignment kernelBMC Bioinformatics20067246151360516677385Search in Google Scholar

Segal E. A genomic code for nucleosome positioning. Nature 2006;44, 772–778.SegalEA genomic code for nucleosome positioningNature200644772–77810.1038/nature04979262324416862119Search in Google Scholar

Karlic RR, Chung H, Lasserre J, Vlahovicek K, Vingron M. Histone modification levels are predictive for gene expression. PNAS USA 2010; 107: 2926–2931.10.1073/pnas.0909344107KarlicRRChungHLasserreJVlahovicekKVingronMHistone modification levels are predictive for gene expressionPNAS USA201010729262931281487220133639Open DOISearch in Google Scholar

Bell JT, Pai AA, Pickrell JK, Gaffney DJ, Pique-Regi R, Degner JF, Gilad Y, Pritchard JK (2011) DNA methylation patterns associate with genetic and gene expression variation in HapMap cell lines. Genome Biol 2011; 12: R10.10.1186/gb-2011-12-1-r1021251332BellJTPaiAAPickrellJKGaffneyDJPique-RegiRDegnerJFGiladYPritchardJK2011DNA methylation patterns associate with genetic and gene expression variation in HapMap cell linesGenome Biol201112R10309129921251332Open DOISearch in Google Scholar

Cuellar-Partida G, et al. Epigenetic priors for identifying active transcription factor binding sites. Bioinformatics 2011; 28: 56–62.22072382Cuellar-PartidaGet alEpigenetic priors for identifying active transcription factor binding sitesBioinformatics201128566210.1093/bioinformatics/btr614324476822072382Search in Google Scholar

Kell DB (2005) Metabolomics, machine learning and modelling: towards an understanding of the language of cells. Biochem Soc Trans 2005; 33: 520–524.10.1042/BST033052015916555KellDB2005Metabolomics, machine learning and modelling: towards an understanding of the language of cellsBiochem Soc Trans20053352052415916555Open DOISearch in Google Scholar

Shen H, Zamboni N, Heinonen M, Rousu J. Metabolite identification through machine learning—Tackling CASMI challenge using fingerID. Metabolites 2013; 3: 484–505.2495800210.3390/metabo3020484ShenHZamboniNHeinonenMRousuJMetabolite identification through machine learning—Tackling CASMI challenge using fingerIDMetabolites20133484505390127324958002Search in Google Scholar

Glaab E, Bacardit J, Garibaldi JM, Krasnogor N. Using rule-based machine learning for candidate disease gene prioritization and sample classification of cancer gene expression data. Plos one. 2012; 7: e39932.10.1371/journal.pone.003993222808075GlaabEBacarditJGaribaldiJMKrasnogorNUsing rule-based machine learning for candidate disease gene prioritization and sample classification of cancer gene expression dataPlos one20127e39932339477522808075Open DOISearch in Google Scholar

Menden MP, Iorio F, Garnett M, McDermott U, Benes CH, Ballester PJ, Saez-Rodriguez J. Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties. PLos one 2013; 8: e61318.2364610510.1371/journal.pone.0061318MendenMPIorioFGarnettMMcDermottUBenesCHBallesterPJSaez-RodriguezJMachine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical propertiesPLos one20138e61318364001923646105Search in Google Scholar

Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Proceedings of the 25th International Conference on Neural Information Processing Systems Lake Tahoe, Nevada 2012: 1097-1105.KrizhevskyASutskeverIHintonGEImageNet classification with deep convolutional neural networksProceedings of the 25th International Conference on Neural Information Processing Systems Lake TahoeNevada201210971105Search in Google Scholar

Lanchantin J, Lin Z, Qi Y. Deep motif: Visualizing genomic sequence classifications. arXiv 2016: 1605.01133.LanchantinJLinZQiYDeep motif: Visualizing genomic sequence classifications20161605.01133Search in Google Scholar

Zeng H, Edwards MD, Liu G, Gifford DK. Convolutional neural network architectures for predicting DNA–protein binding. Bioinformatics 2016; 32(12): 121–127.10.1093/bioinformatics/btw255ZengHEdwardsMDLiuGGiffordDKConvolutional neural network architectures for predicting DNA–protein bindingBioinformatics20163212121127490833927307608Open DOISearch in Google Scholar

Chen J, Guo M, Wang X, Liu B. A comprehensive review and comparison of different computational methods for protein remote homology detection. Briefings in bioinformatics 2016; 108:256.surname>ChenJGuoMWangXLiuBA comprehensive review and comparison of different computational methods for protein remote homology detectionBriefings in bioinformatics2016108256Search in Google Scholar

Torracinta R, Campagne F. Training genotype callers with neural networks. bioRxiv 2016; 097469.TorracintaRCampagneFTraining genotype callers with neural networksbioRxiv201609746910.1101/097469Search in Google Scholar

Poplin R, Newburger D, Dijamco J, Nguyen N, Loy D, Gross SS, McLean CY, DePristo MA. Creating a universal SNP and small indel variant caller with deep neural networks. 2018; bioRxiv: doi.org/10.1101/092890.PoplinRNewburgerDDijamcoJNguyenNLoyDGrossSSMcLeanCYDePristoMACreating a universal SNP and small indel variant caller with deep neural networks2018doi.org/10.1101/092890Open DOISearch in Google Scholar

Schreiber J, Libbrecht M, Bilmes J, Noble W. Nucleotide sequence and dnasei sensitivity are predictive of 3d chromatin architecture. bioRxiv; 2017: 103614.SchreiberJLibbrechtMBilmesJNobleWNucleotide sequence and dnasei sensitivity are predictive of 3d chromatin architecturebioRxiv;201710361410.1101/103614Search in Google Scholar

Boza V, Brejova B, Vinar T. Deepnano: Deep recurrent neural networks for base calling in minion nanopore reads. Plos one 2017;12(6): e0178751.2858240110.1371/journal.pone.0178751BozaVBrejovaBVinarTDeepnano: Deep recurrent neural networks for base calling in minion nanopore readsPlos one2017126e0178751545943628582401Search in Google Scholar

Quang D, Xie X. Danq: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences. Nucleic Acids Res 2016; 44(11): e107–e107. X.2708494610.1093/nar/gkw226QuangDXieXDanq: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequencesNucleic Acids Res20164411e107e107491410427084946Search in Google Scholar

Lee T, Yoon S. Boosted categorical restricted boltzmann machine for computational prediction of splice junctions. Int Conf Machine Learning; 2015: 2483–2492.LeeTYoonSBoosted categorical restricted boltzmann machine for computational prediction of splice junctionsInt Conf Machine Learning;20152483–2492Search in Google Scholar

Baumgartner C, Böhm C, Baumgartner D. Modelling of classification rules on metabolic patterns including machine learning and expert knowledge. J Biomed Inform 2005; 38: 89–98.10.1016/j.jbi.2004.08.00915796999BaumgartnerCBöhmCBaumgartnerDModelling of classification rules on metabolic patterns including machine learning and expert knowledgeJ Biomed Inform200538899815796999Open DOISearch in Google Scholar

Alakwaa FM, Chaudhary K, Garmire LX. Deep learning accurately predicts estrogen receptor status in breast cancer metabolomics data. J Proteom Res 2018; 17: 337–347.10.1021/acs.jproteome.7b00595AlakwaaFMChaudharyKGarmireLXDeep learning accurately predicts estrogen receptor status in breast cancer metabolomics dataJ Proteom Res201817337347575903129110491Open DOISearch in Google Scholar

Hao J, Astle W, De Iorio M, Ebbels T. BATMAN—An R package for the automated quantification ofmetabolites from NMR spectra using a Bayesian model. Bioinformatics 2012; 28: 2088–2090.2263560510.1093/bioinformatics/bts308HaoJAstleWDe IorioMEbbelsTBATMAN—An R package for the automated quantification ofmetabolites from NMR spectra using a Bayesian modelBioinformatics2012282088209022635605Search in Google Scholar

Ravanbakhsh S, Liu P, Bjorndahl TC, Mandal R, Grant JR, Wilson M, Eisner R, Sinelnikov I, Hu X, Luchinat C. Accurate, fully-automated NMR spectral profiling for metabolomics. PLos one 2015; 10: e0124219.10.1371/journal.pone.0124219RavanbakhshSLiuPBjorndahlTCMandalRGrantJRWilsonMEisnerRSinelnikovIHuXLuchinatCAccurate, fully-automated NMR spectral profiling for metabolomicsPLos one201510e0124219444636826017271Open DOISearch in Google Scholar

Hsu PD, Lander ES, Zhang F. Development and Applications of CRISPR-Cas9 for Genome Engineering. Cell 2014; 157: 1262.10.1016/j.cell.2014.05.01024906146HsuPDLanderESZhangFDevelopment and Applications of CRISPR-Cas9 for Genome EngineeringCell20141571262434319824906146Open DOISearch in Google Scholar

Sternberg S, Doudna J. Expanding the Biologist’s Toolkit with CRISPR-Cas9.Molecular Cell. 2015; 58: 568.10.1016/j.molcel.2015.02.03226000842SternbergSDoudnaJExpanding the Biologist’s Toolkit with CRISPR-Cas9Molecular Cell20155856826000842Open DOISearch in Google Scholar

Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, Wyvekens N, Khayter C, Iafrate AJ, Le LP, Aryee MJ, Joung JK. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 2015; 33(2): 187.2551378210.1038/nbt.3117TsaiSQZhengZNguyenNTLiebersMTopkarVVThaparVWyvekensNKhayterCIafrateAJLeLPAryeeMJJoungJKGUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleasesNat Biotechnol2015332187432068525513782Search in Google Scholar

Slaymaker IM et al. Rationally engineered Cas9 nucleases with improved specificity. Science 2016; 351: 84–88.10.1126/science.aad522726628643SlaymakerIMet alRationally engineered Cas9 nucleases with improved specificityScience20163518488471494626628643Open DOISearch in Google Scholar

Kim S, Kim D, Cho SW, Kim J, Kim JS. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 2014; 24 :1012–1019.10.1101/gr.171322.11324696461KimSKimDChoSWKimJKimJSHighly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteinsGenome Res20142410121019403284724696461Open DOISearch in Google Scholar

Casini A, Olivieri M, Petris G, Montagna C, Reginato G, Maule G, Lorenzin F, Prandi D, Romanel A, Demichelis F, Inga A, Cereseto A. A highly specific SpCas9 variant is identified by in vivo screening in yeast. Nature Biotech 2018; 36: 265–271.10.1038/nbt.4066CasiniAOlivieriMPetrisGMontagnaCReginatoGMauleGLorenzinFPrandiDRomanelADemichelisFIngaACeresetoAA highly specific SpCas9 variant is identified by in vivo screening in yeastNature Biotech201836265271606610829431739Open DOISearch in Google Scholar

Wilson H, Elizabeth D, McDonald M. (2002). Factors for success in customer relationship management (CRM) systems. J Marketing Manage 2002; 18(1): 193–219.10.1362/0267257022775918WilsonHElizabethDMcDonaldM.2002Factors for success in customer relationship management (CRM) systemsJ Marketing Manage2002181193219Open DOISearch in Google Scholar

Costa FF. Big data in genomics: challenges and solutions. GIT Lab J 2012; 11: 1-4.CostaFFBig data in genomics: challenges and solutionsGIT Lab J20121114Search in Google Scholar

Ward RM, Schmieder R, Highnam G, Mittelman D. Big data challenges andopportunities in high-throughput sequencing. Syst Biomed 2013; 1: 29-34.10.4161/sysb.24470WardRMSchmiederRHighnamGMittelmanDBig data challenges andopportunities in high-throughput sequencingSyst Biomed201312934Open DOISearch in Google Scholar

Eisenstein M. Big data: The power of petabytes. Nature 2015; 527: S2-S4.10.1038/527S2a26536222EisensteinMBig data: The power of petabytesNature2015527S2S426536222Open DOISearch in Google Scholar

Woodco Bacardit J, Llorà X. Large-scale data mining using genetics-based machine learning. Wiley Interdiscip Rev 2013; 3: 37–61.WoodcoBacardit JLloràXLarge-scale data mining using genetics-based machine learningWiley Interdiscip Rev20133376110.1145/2464576.2480807Search in Google Scholar

eISSN:
2564-615X
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Life Sciences, Genetics, Biotechnology, Bioinformatics, other