Accès libre

Nonlinear pd controllers with gravity compensation for robot manipulators

À propos de cet article


A Nonlinear Proportional-Derivative (NPD) controller with gravity compensation is proposed and applied to robot manipulators in this paper. The proportional and derivative gains are changed by the nonlinear function of errors in the NPD controller. The closed-loop system, composed of nonlinear robot dynamics and NPD controllers, is globally asymptotically stable in position control of robot manipulators. The comparison of the simulation experiments in the position control (the step response) of a robot manipulator with two degrees of freedom is also presented to illustrate that the NPD controller is superior to the conventional PD controller in a position control system. The experimental results show that the NPD controller can obtain a faster response velocity and higher position accuracy than the conventional PD controller in the position control of robot manipulators because the proportional and derivative gains of the NPD controller can be changed by the nonlinear function of errors. The NPD controller provides a novel approach for robot control systems.

4 fois par an
Sujets de la revue:
Computer Sciences, Information Technology