À propos de cet article


In the present age of Internet, data is accumulated at a dramatic pace. The accumulated huge data has no relevance, unless it provides certain useful information pertaining to the interest of the organization. But the real challenge lies in hiding sensitive information in order to provide privacy. Therefore, attribute reduction becomes an important aspect for handling such huge database by eliminating superfluous or redundant data to enable a sensitive rule hiding in an efficient manner before it is disclosed to the public. In this paper we propose a privacy preserving model to hide sensitive fuzzy association rules. In our model we use two processes, named a pre-process and post-process to mine fuzzified association rules and to hide sensitive rules. Experimental results demonstrate the viability of the proposed research.

4 fois par an
Sujets de la revue:
Computer Sciences, Information Technology