À propos de cet article


1. Dubljević V, Venero C, Knafo S. What is cognitive enhancement? In: Knafo S, Venero C, editors. Cognitive Enhancement: Pharmacologic, Environmental and Genetic Factors. Amsterdam: Elsevier Inc.; 2015. p. 1-9. doi: 10.1016/B978-0-12-417042-1.00001-210.1016/B978-0-12-417042-1.00001-2Open DOISearch in Google Scholar

2. Battleday RM, Brem A-K. Modafinil for cognitive neuroenhancement in healthy non-sleep-deprived subjects: A systematic review. Eur Neuropsychopharmacol 2015;25:1865-81. doi: 10.1016/j.euroneuro.2015.07.02810.1016/j.euroneuro.2015.07.02826381811Open DOISearch in Google Scholar

3. Repantis D, Schlattmann P, Laisney O, Heuser I. Modafinil and methylphenidate for neuroenhancement in healthy individuals: A systematic review. Pharmacol Res 2010;62:187-206. doi: 10.1016/j.phrs.2010.04.00210.1016/j.phrs.2010.04.00220416377Open DOISearch in Google Scholar

4. Frati P, Kyriakou C, Rio A, Marinelli E, Vergallo G, Zaami S, Busardò FP. Smart drugs and synthetic androgens for cognitive and physical enhancement: revolving doors of cosmetic neurology. Curr Neuropharmacol 2015;13:5-11. doi: 10.2174/1570159X1366614121022175010.2174/1570159X13666141210221750446204326074739Open DOISearch in Google Scholar

5. Maslen H, Faulmüller N, Savulescu J. Pharmacological cognitive enhancement-how neuroscientific research could advance ethical debate. Front Syst Neurosci 2014;8:107. doi: 10.3389/fnsys.2014.0010710.3389/fnsys.2014.00107405273524999320Search in Google Scholar

6. Farah MJ, Illes J, Cook-Deegan R, Gardner H, Kandel E, King P, Parens E, Sahakian B, Wolpe PR. Neurocognitive enhancement: what can we do and what should we do? Nat Rev Neurosci 2004;5:421-5. doi: 10.1038/nrn139010.1038/nrn139015100724Open DOISearch in Google Scholar

7. Massie CF, Yamga EM, Boot BP. Neuroenhancement: a call for better evidence on safety and efficacy. In: ter Meulen R, Mohammed A, Hall W, editors. Rethinking Cognitive Enhancement. Oxford: Oxford University Press; 2017. p. 57–68.10.1093/acprof:oso/9780198727392.003.0004Search in Google Scholar

8. Lengvenyte A, Strumila R, Grikiniene J. Use of cognitive enhancers among medical students in Lithuania. Nord Stud Alcohol Drugs 2016;33:173–88. doi:10.1515/nsad-2016-0014.10.1515/nsad-2016-0014Search in Google Scholar

9. Partridge BJ, Bell SK, Lucke JC, Yeates S, Hall WD. Smart drugs “as common as coffee”: media hype about neuroenhancement. PLoS One 2011;6:e28416. doi: 10.1371/journal.pone.0028416.10.1371/journal.pone.0028416322766822140584Open DOISearch in Google Scholar

10. Benson K, Flory K, Humphreys KL, Lee SS. Misuse of stimulant medication among college students: A comprehensive review and meta-analysis. Clin Child Fam Psychol Rev 2015;18:50-76. doi: 10.1007/s10567-014-0177-z10.1007/s10567-014-0177-z25575768Search in Google Scholar

11. Nicholson PJ, Wilson N. Smart drugs: implications for general practice. Br J Gen Pract 2017;67:100-1. doi: 10.3399/bjgp17X68943710.3399/bjgp17X689437532562328232331Open DOISearch in Google Scholar

12. Weyandt LL, Oster DR, Marraccini ME, Gudmundsdottir BG, Munro BA, Rathkey ES, McCallum A. Prescription stimulant medication misuse: Where are we and where do we go from here? Exp Clin Psychopharmacol 2016;24:400-14. doi: 10.1037/pha000009310.1037/pha0000093511314127690507Open DOISearch in Google Scholar

13. Sharbaf Shoar N, Marwaha R, Molla M. Dextroamphetamine-Amphetamine. Treasure Island (FL): StatPearls Publishing; 2019.Search in Google Scholar

14. Verghese C, Abdijadid S. Methylphenidate. Treasure Island (FL): StatPearls Publishing; 2019.Search in Google Scholar

15. Greenblatt K, Adams N. Modafinil. Treasure Island (FL): StatPearls Publishing; 2019.Search in Google Scholar

16. Spencer RC, Devilbiss DM, Berridge CW. The cognition-enhancing effects of psychostimulants involve direct action in the prefrontal cortex. Biol Psychiatry 2015;77:940-50. doi: 10.1016/j.biopsych.2014.09.01310.1016/j.biopsych.2014.09.013437712125499957Open DOISearch in Google Scholar

17. Danielson ML, Bitsko RH, Ghandour RM, Holbrook JR, Kogan MD, Blumberg SJ. Prevalence of parent-reported ADHD diagnosis and associated treatment among U.S. children and adolescents, 2016. J Clin Child Adolesc Psychol 2018;47:199-212. doi: 10.1080/15374416.2017.141786010.1080/15374416.2017.1417860583439129363986Open DOISearch in Google Scholar

18. Bagot KS, Kaminer Y. Efficacy of stimulants for cognitive enhancement in non-attention deficit hyperactivity disorder youth: a systematic review. Addiction 2014;109:547-57. PMCID: PMC447117310.1111/add.12460447117324749160Search in Google Scholar

19. Swanson JM, Wigal TL, Volkow ND. Contrast of medical and nonmedical use of stimulant drugs, basis for the distinction, and risk of addiction: comment on Smith and Farah (2011). Psychol Bull 2011;137:742-8. doi: 10.1037/a002489810.1037/a0024898318762521859175Search in Google Scholar

20. The Guardian. Boseley S, Lignel B. Generation meds: the US children who grow up on prescription drugs [displayed 24 March 2019]. Available at https://www.theguardian.com/society/2015/nov/21/children-who-grow-up-on-prescription-drugs-usSearch in Google Scholar

21. NewsComAu. Shepherd T. Childrens’ ADHD dexies turning parents into midnight runners. [displayed 24 March 2019]. Available at https://www.news.com.au/lifestyle/parenting/childrens-adhd-dexies-turning-parents-into-midnight-runners/news-story/9346cfddc1bb1b6c11cf0feeefe701fc?sv=7c00d6f8695c1520561030df513e3f03Search in Google Scholar

22. HuffPost Life. Samakow J. Prescription Drug Abuse: Report Calls Parent Pill Popping An “Epidemic” [displayed 24 March 2019]. Available at https://www.huffpost.com/entry/prescription-drug-abuse-parents_n_1515390Search in Google Scholar

23. Kessler RC, Adler L, Barkley R, Biederman J, Conners CK, Demler O, Faraone SV, Greenhill LL, Howes MJ, Secnik K, Spencer T, Ustun TB, Walters EE, Zaslavsky AM. The prevalence and correlates of adult ADHD in the United States: results from the National Comorbidity Survey Replication. Am J Psychiatry 2006;163:716-23. doi: 10.1176/ajp.2006.163.4.71610.1176/ajp.2006.163.4.716285967816585449Open DOISearch in Google Scholar

24. Wilens TE, Adler LA, Adams J, Sgambati S, Rotrosen J, Sawtelle R, Utzinger L, Fusillo S. Misuse and diversion of stimulants prescribed for ADHD: A systematic review of the literature. J Am Acad Child Adolesc Psychiatry 2008;47:21-31. doi: 10.1097/chi.0b013e31815a56f110.1097/chi.0b013e31815a56f118174822Open DOISearch in Google Scholar

25. Novak SP, Kroutil LA, Williams RL, Van Brunt DL. The nonmedical use of prescription ADHD medications: results from a national Internet panel. Subst Abuse Treat Prev Policy 2007;2:32. doi: 10.1186/1747-597X-2-3210.1186/1747-597X-2-32221174717974020Open DOISearch in Google Scholar

26. Poulin C. From attention-deficit/hyperactivity disorder to medical stimulant use to the diversion of prescribed stimulants to non-medical stimulant use: connecting the dots. Addiction 2007;102:740-51. doi:10.1111/j.1360-0443.2007.01758.x10.1111/j.1360-0443.2007.01758.x17506151Open DOISearch in Google Scholar

27. Kroutil LA, Van Brunt DL, Herman-Stahl MA, Heller DC, Bray RM, Penne MA. Nonmedical use of prescription stimulants in the United States. Drug Alcohol Depend 2006;84:135-43. doi: 10.1016/j.drugalcdep.2005.12.01110.1016/j.drugalcdep.2005.12.01116480836Open DOISearch in Google Scholar

28. South China Morning Post. Anonymous. PLA eyes “Night Eagle” to make army of night owls [displayed 25 March 2019]. Available at https://www.scmp.com/article/982075/pla-eyes-night-eagle-make-army-night-owlsSearch in Google Scholar

29. Greely H, Sahakian B, Harris J, Kessler RC, Gazzaniga M, Campbell P, Farah MJ. Towards responsible use of cognitive-enhancing drugs by the healthy. Nature 2008;456:702-5. doi: 10.1038/456702a10.1038/456702a19060880Open DOISearch in Google Scholar

30. Kim D. Practical use and risk of modafinil, a novel waking drug. Environ Health Toxicol 2012;27:e2012007. doi: 10.5620/eht.2012.27.e201200710.5620/eht.2012.27.e2012007328665722375280Search in Google Scholar

31. Sussman S, Pentz MA, Spruijt-Metz D, Miller T. Misuse of “study drugs:” prevalence, consequences, and implications for policy. Subst Abuse Treat Prev Policy 2006;1:15. doi: 10.1186/1747-597X-1-1510.1186/1747-597X-1-15152473516764722Open DOISearch in Google Scholar

32. Kudlow PA, Treurnicht Naylor K, Xie B, McIntyre RS. Cognitive enhancement in Canadian medical students. J Psychoactive Drugs 2013;45:360-5. doi: 10.1080/02791072.2013.8250332437717610.1080/02791072.2013.82503324377176Search in Google Scholar

33. McCabe SE, Knight JR, Teter CJ, Wechsler H. Non-medical use of prescription stimulants among US college students: prevalence and correlates from a national survey. Addiction 2005;100:96-106. doi: 10.1111/j.1360-0443.2005.00944.x10.1111/j.1360-0443.2005.00944.x1559819715598197Open DOISearch in Google Scholar

34. Emanuel RM, Frellsen SL, Kashima KJ, Sanguino SM, Sierles FS, Lazarus CJ. Cognitive enhancement drug use among future physicians: findings from a multi-institutional census of medical students. J Gen Intern Med 2013;28:1028-34. doi: 10.1007/s11606-012-2249-410.1007/s11606-012-2249-423595918371039423595918Open DOISearch in Google Scholar

35. Tuttle JP, Scheurich NE, Ranseen J. Prevalence of ADHD diagnosis and nonmedical prescription stimulant use in medical students. Acad Psychiatry 2010;34:220-3. doi: 10.1176/appi.ap.34.3.22010.1176/appi.ap.34.3.2202043110420431104Open DOISearch in Google Scholar

36. Webb JR, Valasek MA, North CS. Prevalence of stimulant use in a sample of US medical students. Ann Clin Psychiatry 2013;25:27-32. PMID: 23376867Search in Google Scholar

37. Graff Low K, Gendaszek AE. Illicit use of psychostimulants among college students: A preliminary study. Psychol Health Med 2002;7:283-7. doi: 10.1080/1354850022013938610.1080/13548500220139386Open DOISearch in Google Scholar

38. Barrett SP, Darredeau C, Bordy LE, Pihl RO. Characteristics of methylphenidate misuse in a university student sample. Can J Psychiatry 2005;50:457-61. doi: 10.1177/07067437050500080510.1177/07067437050500080516127963Open DOISearch in Google Scholar

39. Teter CJ, McCabe SE, LaGrange K, Cranford JA, Boyd CJ. Illicit use of specific prescription stimulants among college students: prevalence, motives, and routes of administration. Pharmacotherapy 2006;26:1501-10. doi: 10.1592/phco.26.10.150110.1592/phco.26.10.1501179422316999660Search in Google Scholar

40. Sattler S, Mehlkop G, Graeff P, Sauer C. Evaluating the drivers of and obstacles to the willingness to use cognitive enhancement drugs: the influence of drug characteristics, social environment, and personal characteristics. Subst Abuse Treat Prev Policy 2014;9:8. doi: 10.1186/1747-597X-9-810.1186/1747-597X-9-8392862124484640Search in Google Scholar

41. Ilieva IP, Hook CJ, Farah MJ. Prescription stimulants’ effects on healthy inhibitory control, working memory, and episodic memory: a meta-analysis. J Cogn Neurosci 2015;27:1069-89. doi: 10.1162/jocn_a_0077610.1162/jocn_a_0077625591060Open DOISearch in Google Scholar

42. Smith ME, Farah MJ. Are prescription stimulants “smart pills”? The epidemiology and cognitive neuroscience of prescription stimulant use by normal healthy individuals. Psychol Bull 2011;137:717-41. doi: 10.1037/a002382510.1037/a0023825359181421859174Open DOISearch in Google Scholar

43. McGaugh JL, Roozendaal B. Drug enhancement of memory consolidation: historical perspective and neurobiological implications. Psychopharmacology (Berl) 2009;202:3-14. doi: 10.1007/s00213-008-1285-610.1007/s00213-008-1285-618704369Open DOISearch in Google Scholar

44. Soetens E, Casaer S, D’Hooge R, Hueting JE. Effect of amphetamine on long-term retention of verbal material. Psychopharmacology (Berl) 1995;119:155-62. doi: 10.1007/BF0224615610.1007/BF022461567659762Open DOISearch in Google Scholar

45. Marraccini ME, Weyandt LL, Rossi JS, Gudmundsdottir BG. Neurocognitive enhancement or impairment? A systematic meta-analysis of prescription stimulant effects on processing speed, decision-making, planning, and cognitive perseveration. Exp Clin Psychopharmacol 2016;24:269-84. doi: 10.1037/pha000007910.1037/pha0000079496888827454675Open DOISearch in Google Scholar

46. Ilieva IP, Farah MJ. Enhancement stimulants: perceived motivational and cognitive advantages. Front Neurosci 2013;7:198. doi: 10.3389/fnins.2013.0019810.3389/fnins.2013.00198381392424198755Open DOISearch in Google Scholar

47. Vrecko S. Just how cognitive is “Cognitive Enhancement”? On the significance of emotions in university students’ experiences with study drugs. AJOB Neurosci 2013;4:4-12. doi: 10.1080/21507740.2012.74014110.1080/21507740.2012.740141359064623486311Open DOISearch in Google Scholar

48. Cropsey KL, Schiavon S, Hendricks PS, Froelich M, Lentowicz I, Fargason R. Mixed-amphetamine salts expectancies among college students: Is stimulant induced cognitive enhancement a placebo effect? Drug Alcohol Depend 2017;178:302-9. doi: 10.1016/j.drugalcdep.2017.05.02410.1016/j.drugalcdep.2017.05.02428686989Open DOISearch in Google Scholar

49. Wood S, Sage JR, Shuman T, Anagnostaras SG. Psychostimulants and cognition: a continuum of behavioral and cognitive activation. Pharmacol Rev 2014;66:193-221. doi: 10.1124/pr.112.00705410.1124/pr.112.007054Open DOISearch in Google Scholar

50. Taylor SF, Welsh RC, Wager TD, Luan Phan K, Fitzgerald KD, Gehring WJ. A functional neuroimaging study of motivation and executive function. Neuroimage 2004;21:1045-54. doi: 10.1016/j.neuroimage.2003.10.03210.1016/j.neuroimage.2003.10.03215006672Open DOISearch in Google Scholar

51. Marshuetz C, Smith EE. Working memory for order information: Multiple cognitive and neural mechanisms. Neuroscience 2006;139:195-200. doi: 10.1016/j.neuroscience.2005.08.02410.1016/j.neuroscience.2005.08.024Open DOISearch in Google Scholar

52. Curtis CE. Prefrontal and parietal contributions to spatial working memory. Neuroscience 2006;139:173-80. doi: 10.1016/j.neuroscience.2005.04.07010.1016/j.neuroscience.2005.04.070Open DOISearch in Google Scholar

53. Nebel K, Wiese H, Stude P, de Greiff A, Diener H-C, Keidel M. On the neural basis of focused and divided attention. Cogn Brain Res 2005;25:760-76. doi: 10.1016/j.cogbrainres.2005.09.01110.1016/j.cogbrainres.2005.09.011Open DOISearch in Google Scholar

54. Rowe JB, Owen AM, Johnsrude IS, Passingham RE. Imaging the mental components of a planning task. Neuropsychologia 2001;39:315-27. doi: 10.1016/S0028-3932(00)00109-310.1016/S0028-3932(00)00109-3Open DOISearch in Google Scholar

55. Yerkes RM, Dodson JD. The relation of strength of stimulus to rapidity of habit-formation. J Comp Neurol Psychol 1908;18:459–82. doi: 10.1002/cne.920180503.10.1002/cne.920180503Open DOISearch in Google Scholar

56. Yerkes RM. Modifiability of behavior in its relations to the age and sex of the dancing mouse. J Comp Neurol Psychol 1909;19:237-71. doi: 10.1002/cne.92019030310.1002/cne.920190303Open DOISearch in Google Scholar

57. Dodson JD. The relation of strength of stimulus to rapidity of habit-formation in the kitten. J Anim Behav 1915;5:330-6. doi: 10.1037/h007341510.1037/h0073415Open DOISearch in Google Scholar

58. Chaby LE, Sheriff MJ, Hirrlinger AM, Braithwaite VA. Can we understand how developmental stress enhances performance under future threat with the Yerkes-Dodson law? Commun Integr Biol 2015;8:e1029689. doi: 10.1080/19420889.2015.102968910.1080/19420889.2015.1029689459436926479861Search in Google Scholar

59. Broadhurst PL. Emotionality and the Yerkes-Dodson law. J Exp Psychol 1957;54:345-52. doi: 10.1037/h004911410.1037/h0049114Open DOISearch in Google Scholar

60. Salehi B, Cordero MI, Sandi C. Learning under stress: the inverted-U-shape function revisited. Learn Mem 2010;17:522-30. doi: 10.1101/lm.191411010.1101/lm.191411020884754Open DOISearch in Google Scholar

61. Diamond DM, Campbell AM, Park CR, Halonen J, Zoladz PR. The temporal dynamics model of emotional memory processing: a synthesis on the neurobiological basis of stress-induced amnesia, flashbulb and traumatic memories, and the Yerkes-Dodson law. Neural Plast 2007;2007:60803. doi: 10.1155/2007/6080310.1155/2007/60803Search in Google Scholar

62. Pribram KH, McGuinness D. Arousal, activation, and effort in the control of attention. Psychol Rev 1975;82:116-49. doi: 10.1037/h007678010.1037/h0076780Open DOISearch in Google Scholar

63. Lafreniere KD. Reversal theory: an introduction. Patient Educ Couns 1993;22:63-71. doi: 10.1016/0738-3991(93)90002-E10.1016/0738-3991(93)90002-Open DOISearch in Google Scholar

64. Martin RA, Kuiper NA, Olinger LJ, Dobbin J. Is stress always bad? Telic versus paratelic dominance as a stress-moderating variable. J Pers Soc Psychol 1987;53:970-82. doi: 10.1037/0022-3514.53.5.97010.1037/0022-3514.53.5.970Open DOISearch in Google Scholar

65. Kuczenski R, Segal DS. Effects of methylphenidate on extracellular dopamine, serotonin, and norepinephrine: comparison with amphetamine. J Neurochem 1997;68:2032-7. doi: 10.1046/j.1471-4159.1997.68052032.x10.1046/j.1471-4159.1997.68052032.x9109529Open DOISearch in Google Scholar

66. Berridge CW, Devilbiss DM, Andrzejewski ME, Arnsten AFT, Kelley AE, Schmeichel B, Hamilton C, Spencer RC. Methylphenidate preferentially increases catecholamine neurotransmission within the prefrontal cortex at low doses that enhance cognitive function. Biol Psychiatry 2006;60:1111-20. doi: 10.1016/j.biopsych.2006.04.02210.1016/j.biopsych.2006.04.02216806100Search in Google Scholar

67. Schmeichel BE, Berridge CW. Neurocircuitry underlying the preferential sensitivity of prefrontal catecholamines to low-dose psychostimulants. Neuropsychopharmacology 2013;38:1078-84. doi: 10.1038/npp.2013.610.1038/npp.2013.6362940723303075Open DOISearch in Google Scholar

68. Wood SC, Anagnostaras SG. Memory and psychostimulants: modulation of Pavlovian fear conditioning by amphetamine in C57BL/6 mice. Psychopharmacology (Berl) 2009;202:197-206. doi: 10.1007/s00213-008-1185-910.1007/s00213-008-1185-9288419518478205Open DOISearch in Google Scholar

69. Madras BK, Xie Z, Lin Z, Jassen A, Panas H, Lynch L, Johnson R, Livni E, Spencer TJ, Bonab AA, Miller GM, Fischman AJ. Modafinil occupies dopamine and norepinephrine transporters in vivo and modulates the transporters and trace amine activity in vitro. J Pharmacol Exp Ther 2006;319:561-9. doi: 10.1124/jpet.106.10658310.1124/jpet.106.106583Open DOISearch in Google Scholar

70. Ferraro L, Fuxe K, Tanganelli S, Fernandez M, Rambert FA, Antonelli T. Amplification of cortical serotonin release: a further neurochemical action of the vigilance-promoting drug modafinil. Neuropharmacology 2000;39:1974-83. doi: 10.1016/s0028-3908(00)00019-810.1016/s0028-3908(00)00019-8Open DOISearch in Google Scholar

71. Huang Q, Zhang L, Tang H, Wang L, Wang Y. Modafinil modulates GABA-activated currents in rat hippocampal pyramidal neurons. Brain Res 2008;1208:74-8. doi: 10.1016/j.brainres.2008.02.02410.1016/j.brainres.2008.02.02418395702Search in Google Scholar

72. Haris M, Singh A, Cai K, Nath K, Verma G, Nanga RPR, Hariharan H, Detre JA, Epperson N, Reddy R. High resolution mapping of modafinil induced changes in glutamate level in rat brain. PLoS One 2014;9:e103154. doi: 10.1371/journal.pone.010315410.1371/journal.pone.0103154411338225068408Search in Google Scholar

73. Ishizuka T, Murotani T, Yamatodani A. Modanifil activates the histaminergic system through the orexinergic neurons. Neurosci Lett 2010;483:193–6. doi: 10.1016/j.neulet.2010.08.00510.1016/j.neulet.2010.08.00520696213Open DOISearch in Google Scholar

74. Mereu M, Chun LE, Prisinzano T, Newman AH, Katz JL, Tanda G. The unique psychostimulant profile of (±)-modafinil: investigation of behavioral and neurochemical effects in mice. Eur J Neurosci 2017;45:167-74. doi: 10.1111/ejn.133762754528510.1111/ejn.13376560433727545285Search in Google Scholar

75. Repantis D, Maier LJ, Heuser I. Correspondence arising: Modafinil for cognitive neuroenhancement in health non-sleep-deprived-subjects. Eur Neuropsychopharmacol 2016;26:392-3. doi: 10.1016/j.euroneuro.2015.12.0162670669510.1016/j.euroneuro.2015.12.01626706695Search in Google Scholar

76. Wesensten NJ, Belenky G, Kautz MA, Thorne DR, Reichardt RM, Balkin TJ. Maintaining alertness and performance during sleep deprivation: modafinil versus caffeine. Psychopharmacology (Berl) 2002;159:238-47. doi: 10.1007/s00213010091610.1007/s00213010091611862356Open DOISearch in Google Scholar

77. Wesensten NJ, Killgore WDS, Balkin TJ. Performance and alertness effects of caffeine, dextroamphetamine, and modafinil during sleep deprivation. J Sleep Res 2005;14:255-66. doi: 10.1111/j.1365-2869.2005.00468.x10.1111/j.1365-2869.2005.00468.x16120100Open DOISearch in Google Scholar

78. Franke AG, Gränsmark P, Agricola A, Schühle K, Rommel T, Sebastian A, Balló HE, Gorbulev S, Gerdes C, Frank B, Ruckes C, Tüscher O, Lieb K. Methylphenidate, modafinil, and caffeine for cognitive enhancement in chess: A double-blind, randomised controlled trial. Eur Neuropsychopharmacol 2017;27:248-60. doi: 10.1016/j.euroneuro.2017.01.0062811908310.1016/j.euroneuro.2017.01.00628119083Search in Google Scholar

79. Myrick H, Malcolm R, Taylor B, LaRowe S. Modafinil: preclinical, clinical, and post-marketing surveillance - a review of abuse liability issues. Ann Clin Psychiatry 2004;16:101-9. doi: 10.1080/1040123049045374310.1080/104012304904537431532890315328903Open DOISearch in Google Scholar

80. Malcolm R, Book SW, Moak D, DeVane L, Czepowicz V. Clinical applications of modafinil in stimulant abusers: low abuse potential. Am J Addict 2002;11:247-9. doi: 10.1080/1055049029008802710.1080/1055049029008802712202017Open DOISearch in Google Scholar

81. Warot D, Corruble E, Payan C, Weil JS, Puech AJ. Subjective effects of modafinil, a new central adrenergic stimulant in healthy volunteers: a comparison with amphetamine, caffeine and placebo. Eur Psychiatry 1993;8:201-8.10.1017/S0924933800002923Search in Google Scholar

82. Cope ZA, Minassian A, Kreitner D, MacQueen DA, Milienne-Petiot M, Geyer MA, Perry W, Young JW. Modafinil improves attentional performance in healthy, non-sleep deprived humans at doses not inducing hyperarousal across species. Neuropharmacology 2017;125:254-62. doi: 10.1016/j.neuropharm.2017.07.03110.1016/j.neuropharm.2017.07.031647290228774856Open DOISearch in Google Scholar

83. Ozturk A, Deveci E. Drug abuse of modafinil by a cannabis user. Klin Psikofarmakol Bülteni - Bulletin Clin Psychopharmacol 2014;24:405-7. doi: 10.5455/bcp.2013062401330310.5455/bcp.20130624013303Open DOISearch in Google Scholar

84. Krishnan R, Chary KV. A rare case modafinil dependence. J Pharmacol Pharmacother 2015;6:49-50. doi: 10.4103/0976-500X.14914910.4103/0976-500X.149149431925225709356Open DOISearch in Google Scholar

85. Schmidt A, Müller F, Dolder PC, Schmid Y, Zanchi D, Egloff L, Liechti ME, Borgwardt S. Acute effects of methylphenidate, modafinil, and MDMA on negative emotion processing. Int J Neuropsychopharmacol 2018;21:345-54. doi: 10.1093/ijnp/pyx11210.1093/ijnp/pyx112588741429206921Open DOISearch in Google Scholar

86. Kampman KM, Lynch KG, Pettinati HM, Spratt K, Wierzbicki MR, Dackis C, O’Brien CP. A double blind, placebo controlled trial of modafinil for the treatment of cocaine dependence without co-morbid alcohol dependence. Drug Alcohol Depend 2015;155:105-10. doi: 10.1016/j.drugalcdep.2015.08.00510.1016/j.drugalcdep.2015.08.005458200326320827Search in Google Scholar

87. Mahoney JJ, Jackson BJ, Kalechstein AD, De La Garza R, Chang LC, Newton TF. Acute modafinil exposure reduces daytime sleepiness in abstinent methamphetamine-dependent volunteers. Int J Neuropsychopharmacol 2012;15:1241-9. doi: 10.1017/S146114571100180510.1017/S1461145711001805341189622214752Open DOISearch in Google Scholar

88. Ghahremani DG, Tabibnia G, Monterosso J, Hellemann G, Poldrack RA, London ED. Effect of modafinil on learning and task-related brain activity in methamphetamine-dependent and healthy individuals. Neuropsychopharmacology 2011;36:950-9. doi: 10.1038/npp.2010.23310.1038/npp.2010.233307726421289606Open DOISearch in Google Scholar

89. Hatori M, Gronfier C, Van Gelder RN, Bernstein PS, Carreras J, Panda S, Marks F, Sliney D, Hunt CE, Hirota T, Furukawa T, Tsubota K. Global rise of potential health hazards caused by blue light-induced circadian disruption in modern aging societies. NPJ Aging Mech Dis 2017;3:9. doi: 10.1038/s41514-017-0010-210.1038/s41514-017-0010-2547380928649427Open DOISearch in Google Scholar

90. Medic G, Wille M, Hemels ME. Short- and long-term health consequences of sleep disruption. Nat Sci Sleep 2017;9:151-61. doi: 10.2147/NSS.S13486410.2147/NSS.S134864544913028579842Open DOISearch in Google Scholar

Anglais, Slovenian
4 fois par an
Sujets de la revue:
Medicine, Basic Medical Science, other