Accès libre

Cadmium and zinc induced similar changes in protein and glycoprotein patterns in tobacco (nicotiana tabacum l.) seedlings and plants

À propos de cet article


1. Das P, Samantaray S, Rout GR. Studies on cadmium toxicity in plants: a review. Environ Pollut 1997;98:29-36.10.1016/S0269-7491(97)00110-3Search in Google Scholar

2. Skorzyńska-Polit E, Baszyński T. Differences in sensitivity of the photosynthetic apparatus in Cd-stressed runner bean plants in relation to their age. Plant Sci 1997;128:11-21.10.1016/S0168-9452(97)00126-XSearch in Google Scholar

3. Sanita di Toppi L, Gabbrielli R. Response to cadmium in higher plants. Environ Exp Bot 1999;41:105-30.10.1016/S0098-8472(98)00058-6Search in Google Scholar

4. Shah K, Kumar RG, Verma S, Dubey RS. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 2001;161:1135-44.10.1016/S0168-9452(01)00517-9Search in Google Scholar

5. Romero-Puertas MC, Palma JM, Gomez M, del Rio LA, Sandalio LM. Cadmium causes the oxidative modifications of proteins in pea plants. Plant Cell Environ 2002;25:677-86.10.1046/j.1365-3040.2002.00850.xSearch in Google Scholar

6. Aravind P, Prasad MNV. Zinc alleviates cadmium-induced oxidative stress in Ceratophyllum demersum L.: a free floating freshwater macrophyte. Plant Physiol Biochem 2003;41:391-7.10.1016/S0981-9428(03)00035-4Search in Google Scholar

7. Aravind P, Prasad MNV. Modulation of cadmium-induced oxidative stress in Caratophyllum demersum by zinc involves ascorbate-glutathion cycle and glutathione metabolism. Plant Physiol Biochem 2005;43:107-16.10.1016/j.plaphy.2005.01.002Search in Google Scholar

8. Vallee BL, Falchuk KH. The biochemical basis of zinc physiology. Physiol Rev 1993;73:79-118.10.1152/physrev.1993.73.1.79Search in Google Scholar

9. Ullrich SM, Ramsey MH, Helios-Rybicka E. Total and exchangeable concentrations of heavy metal in soils near Bytom, an area of Pb/Zn mining and smelting in upper Silesia, Poland. Appl Geochem 1999;14:187-96.10.1016/S0883-2927(98)00042-0Search in Google Scholar

10. Wu F, Zhang G. Alleviation of cadmium-toxicity by application of zinc and ascorbic acid in barley. J Plant Nutr 2002;25:2745-61.10.1081/PLN-120015536Search in Google Scholar

11. Hassan MJ, Zhang G, Wu F, Wie K, Chen Z. Zinc alleviates growth inhibition and oxidative stress caused by cadmium in rice. J Plant Nutr Soil Sci 2005;168:255-61.10.1002/jpln.200420403Search in Google Scholar

12. Tkalec M, Prebeg T, Roje V, Pevalek-Kozlina, Ljubešić N. Cadmium induced responses in duckweed Lemna minor L.Acta Physiol Plant 2008;30:881-90.10.1007/s11738-008-0194-ySearch in Google Scholar

13. Jomova K, Morovič M. Effect of heavy metal treatment on molecular changes in root tips of Lupinus luteus L. Czech J Food Sci 2009;27(Special issue):S386-9.10.17221/602-CJFSSearch in Google Scholar

14. Siedlecka A. Some aspects of interactions between heavy metals and plant mineral nutrients. Acta Soc Bot Pol 1995;64:265-72.10.5586/asbp.1995.035Search in Google Scholar

15. AI-Rumaih MM, Rushdy SS, Warsy AS. Alteration in the protein electrophoretic patterns of cowpea, (Vigna unguiculata L.) treated with cadmium in the presence or absence of gibberellic acid. Saudi J Biol Sci 2002;9:47-56.Search in Google Scholar

16. Sobkowiak R, Deckert J. Proteins induced by cadmium in soybean cells. J Plant Physiol 2006;163:1203-6.10.1016/j.jplph.2005.08.01717032622Search in Google Scholar

17. Pos V, Hunyadi-Gulyas E, Caiazzo R, Jocsak I, Medzihradszky KF, Lukacs N. Induction of pathogenesis-related proteins in intercellular fl uid by cadmium stress in barley (Hordeum vulgare L.) - A proteomic analysis. Acta Aliment 2011;40:164-75.Search in Google Scholar

18. Ahsan N, Lee SH, Lee DG, Lee H, Lee SW, Bahk JD, Lee BH. Physiological and protein profiles alternation of germinating rice seedlings exposed to acute cadmium toxicity. C R Biol 2007;330:735-46.10.1016/j.crvi.2007.08.00117905393Search in Google Scholar

19. Stevens LH, Stoopen GM, Elbers IJ, Molthoff JW, Bakker HAC, Lommen A, Bosch D, Jordi W. Effect of climate conditions and plant developmental stage on the stability of antibodies expressed in transgenic tobacco. Plant Physiol 2000;124:173-82.10.1104/pp.124.1.1735913210982432Search in Google Scholar

20. Elbers I JW, Stoopen GM, Bakker H, Stevens LH, Bardor M, Molthoff JW, Jordi WJRM, Bosch D, Lommen A. Influence of growth conditions and developmental stage on N-glycan heterogeneity of transgenic immunoglobulin G and endogenous proteins in tobacco leaves. Plant Physiol 2001;126:1314-22.10.1104/pp.126.3.131411648811457982Search in Google Scholar

21. Krsnik-Rasol M, Čipčić H, Poljuha D, Hagege D. Electrophoretic protein patterns of sugar beet tissue lines. Phyton 2000;41:13-20.Search in Google Scholar

22. Balen B, Milošević J, Krsnik-Rasol M. Protein and glycoprotein patterns related to morphogenesis in Mammillaria gracillis Pfeiff. tissue culture. Food Technol Biotechnol 2002;40:275-80.Search in Google Scholar

23. Pavoković D, Šola I, Hagege D, Krsnik-Rasol M. Sugarinduced changes in cellular and extracellular protein and glycoprotein patterns of sugarbeet cell lines. Acta Bot Croat 2007;66:127-34.Search in Google Scholar

24. Balen B, Zamfi r A, Vakhrushev SY, Krsnik-Rasol M, Peter- Katalinić J. Determination of Mammillaria gracillis N-glycan patterns by ESI Q-TOF mass spectrometry. Croat Chem Acta 2005;78: 463-77.Search in Google Scholar

25. Balen B, Krsnik-Rasol M, Zamfir AD, Milošević J, Vakhrushev SY, Peter-Katalinić J. Glycoproteomic survey of Mammillaria gracillis tissues grown in vitro. J Proteome Res 2006;5:1658-66.10.1021/pr060032716823973Search in Google Scholar

26. Balen B, Krsnik-Rasol M, Zamfi r AD, Zadro I, Vakhrushev SY, Peter-Katalinić J. Assessment of N-glycan heterogeneity of cactus glycoproteins by one-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-fl ight mass spectrometry. J Biomol Tech 2007;18:150-60.Search in Google Scholar

27. Balen B, Peharec P, Krsnik-Rasol M. Developmentally specifi c soluble and membrane proteins and glycoproteins in Mammillaria gracillis Pfeiff. (Cactaceae) tissue culture. Acta Bot Croat 2008;67:221-7.Search in Google Scholar

28. Koiwa H, Li F, McCully MG, Mendoza I, Koizumi N, Manabe Y, Nakagawa Y, Zhu J, Rus A, Pardo JM, Bressan RA, Hasegawa PM. The STT3a subunit isoform of the Arabidopsis oligosaccharyltransferase controls adaptive responses to salt/osmotic stress. Plant Cell 2003;15:2273-84.10.1105/tpc.01386219729412972670Search in Google Scholar

29. Kang JS, Frank J, Kang CH, Kajiura H, Vikram M, Ueda A, Kim S, Bahk JD, Triplett B, Fujiyama K, Lee SY, von Schaewen A, Koiwa H. Salt tolerance of Arabidopsis thaliana requires maturation of N glycosylated proteins in the Golgi. Proc Natl Acad Sci USA 2008;105:5933-8.10.1073/pnas.0800237105Search in Google Scholar

30. Komatsu S, Yamada E, Furukawa K. Cold stress changes the concanavalin A-positive glycosylation pattern of proteins expressed in the basal parts of rice leaf sheaths. Amino Acids 2009;36:115-23.10.1007/s00726-008-0039-4Search in Google Scholar

31. Carpena RO, Vazquez S, Esteban E, Fernandez-Pascual M, de Felipe MR, Zornoza P. Cadmium-stress in white lupin: effects on nodule structure and functioning. Plant Physiol Biochem 2003;41:911-9.10.1016/S0981-9428(03)00136-0Search in Google Scholar

32. Zhang M, Henquet M, Chen Z, Zhang H, Zhang Y, Ren X, van der Krol S, Gonneau M, Bosch D, Gong Z. LEW3, encoding a putative alpha-1,2-mannosyltransferase (ALG11) in N-linked glycoprotein, plays vital roles in cell-wall biosynthesis and the abiotic stress response in Arabidopsis thaliana. Plant J 2009;60:983-99.10.1111/j.1365-313X.2009.04013.xSearch in Google Scholar

33. Johnson KL, Jones BJ, Bacic A, Schultz CJ. The fasciclinlike arabinogalactan proteins of Arabidopsis. A multigene family of putative cell adhesion molecules. Plant Physiol 2003;133:1911-25.10.1104/pp.103.031237Search in Google Scholar

34. Havir EA, Brisson LF, Zelitch I. Distribution of catalase isoforms in Nicotiana tabacum. Phytochemistry 1996;41:699-702.10.1016/0031-9422(95)00674-5Search in Google Scholar

35. Ganapathi TR, Suprasanna P, Rao PS, Bapat VA. Tobacco (Nicotiana tabacum L.) - A model system for tissue culture interventions and genetic engineering. Indian J Biotechnol 2004;3:171-84.Search in Google Scholar

36. Garnier L, Simon-Plas F, Thuleau P, Agnel JP, Blein JP, Ranjeva R, Montillet JL. Cadmium affects tobacco cells by a series of three waves of reactive oxygen species that contribute to cytotoxicity. Plant Cell Environ 2006;29:1956-69.10.1111/j.1365-3040.2006.01571.xSearch in Google Scholar

37. Gratao PL, Pompeu GB, Capaldi FR, Vitorello VA, Lea PJ, Azevedo RA. Antioxidant response of Nicotiana tabacum cv. Bright Yellow 2 cells to cadmium and nickel stress. Plant Cell Tiss Organ Cult 2008;94:73-83.10.1007/s11240-008-9389-6Search in Google Scholar

38. Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol 1962;15:473-97.10.1111/j.1399-3054.1962.tb08052.xSearch in Google Scholar

39. Gichner T, Ptacek O, Stavreva DA, Plewa MJ. Comparison of DNA damage in plants as measured by single cell gel electrophoresis and somatic leaf mutations induced by monofunctional alkylating agents. Environ Mol Mutagen 1999;33:279-86.10.1002/(SICI)1098-2280(1999)33:4<279::AID-EM4>3.0.CO;2-KSearch in Google Scholar

40. Staples RC, Stahmann MA. Changes in proteins and several enzymes in susceptible bean leaves after infection by the bean rust fungus. Phytopatology 1964;54:760-4.Search in Google Scholar

41. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248-54.10.1016/0003-2697(76)90527-3Search in Google Scholar

42. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970;227:680-5.10.1038/227680a0Search in Google Scholar

43. Blum H, Beier H, Gross HJ. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 1987;8:93-9.10.1002/elps.1150080203Search in Google Scholar

44. Hruba P, Tupy J. N-glycoproteins specifi c for different stages of microspore and pollen development in tobacco. Plant Sci 1999;141:29-40.10.1016/S0168-9452(98)00224-6Search in Google Scholar

45. Yamashita K, Totani K, Ohkura T, Takasaki S, Goldstein IJ, Kobata A. Carbohydrate binding properties of complex-type oligosaccharides on immobilized Datura stramonium lectin. J Biol Chem 1987;262:1602-7.10.1016/S0021-9258(19)75678-6Search in Google Scholar

46. Merant C, Messouak A, Cadore JL, Monier JC. PNA-binding glycans are expressed at high levels on horse mature and immature T lymphocytes and a subpopulation of B-lymphocytes. Glycoconj J 2005;22:27-34.10.1007/s10719-005-0228-215864432Search in Google Scholar

47. Shah MM, Fujiyama K, Flynn CR, Joshi L. Sialylated endogenous glycoconjugates in plant cells. Nature Biotechnol 2003;21:1470-1.10.1038/nbt91214608367Search in Google Scholar

48. Rangan L, Vogel C, Srivastava AK. Analysis of context sequence surrounding translation initiation site from complete genome of model plants. Mol Biotechnol 2008;39:207-13.10.1007/s12033-008-9036-918236175Search in Google Scholar

49. Zhang W, Wu Y, Schnable JC, Zeng Z, Freeling M, Crawford GE, Jiang J. High-resolution mapping of open chromatin in the rice genome. Genome Res 2012;22:151-62.10.1101/gr.131342.111324620222110044Search in Google Scholar

50. Kyndt T, Denil S, Haegeman A, Trooskens G, De Meyer T, Van Criekinge W, Gheysen G. Transcriptome analysis of rice mature root tissue and root tips in early development by massive parallel sequencing. J Exp Bot 2012;63: 2141-57.10.1093/jxb/err43522213813Search in Google Scholar

51. Qureshi MI, Qadir S, Zolla L. Proteomics-based dissection of stress-responsive pathways in plants. J Plant Physiol 2007;164:1239-60.10.1016/j.jplph.2007.01.013Search in Google Scholar

52. Porubleva L, Chitnis PR. Proteomics: A powerful tool in the post-genomic era. Indian J Biochem Biophys 2000;37:360-8.Search in Google Scholar

53. Sanita di Toppi L, Gabbrielli R. Response to cadmium in higher plants. Environ Exp Bot 1999;41:105-30.10.1016/S0098-8472(98)00058-6Search in Google Scholar

54. Cobbett CS. Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 2000;123:825-32.10.1104/pp.123.3.825Search in Google Scholar

55. Delhaize E, Robinson NJ, Jackson PJ. Effects of cadmium on gene expression in cadmium-tolerant and cadmiumsensitive Datura innoxia cells. Plant Mol Biol 1989;12:487-97.10.1007/BF00036963Search in Google Scholar

56. Grunhage L, Weigel H, Ilge D, Jager H. Isolation and partial characterization of a cadmium-binding protein from Pisum sativum. J Plant Physiol 1985;119:327-34.10.1016/S0176-1617(85)80100-0Search in Google Scholar

57. Evans IM, Gatehouse LN, Gatehouse JA, Robinson NJ, Croy RRD. A gene from pea (Pisum sativum L.) with homology to metallothionein genes. FEBS Letters 1990;262:29-32.10.1016/0014-5793(90)80145-9Search in Google Scholar

58. Zeng XW, Qiu RL, Ying RR, Tang YT, Tang L, Fang XH. The differentially-expressed proteome in Zn/Cd hyperaccumulator Arabis paniculata Franch. in response to Zn and Cd. Chemosphere 2011;82:321-8.10.1016/j.chemosphere.2010.10.03021074242Search in Google Scholar

59. Hirano Y, Tsumuraya Y, Hashimoto Y. Characterization of spinach leaf α-l-arabinofuranosidases and β-galactosidases and their synergistic action on an endogenous arabinogalactanprotein. Physiol Plant 1994;92:286-96.10.1111/j.1399-3054.1994.tb05339.xSearch in Google Scholar

60. Kataoka T, Furukawa J, Nakanishi TM. The decrease of extracted apoplast protein in soybean root tip by aluminium treatment. Biol Plant 2003;36:445-9.10.1023/A:1024302924984Search in Google Scholar

61. Scheel T, Pritsch K, Schloter M, Kalbitz K. Precipitation of enzymes and organic matter by aluminum - Impacts on carbon mineralization. J Plant Nutr Soil Sci 2008;171:900-7.10.1002/jpln.200700146Search in Google Scholar

62. Maksymiec W. Signaling responses in plants to heavy metal stress. Acta Physiol Plant 2007;29:177-87.10.1007/s11738-007-0036-3Search in Google Scholar

63. Hossain Z, Nouri M-Z, Komatsu S. Plant cell organelle proteomics in response to abiotic stress. J Proteome Res 2012;11:37-48.10.1021/pr200863r22029473Search in Google Scholar

64. Almagro L, Gomez Ros LV, Belchi-Navarro S, Bru R, Ros Barcelo A, Pedreno MA. Class III peroxidases in plant defence reactions. J Exp Bot 2009;60:377-90.10.1093/jxb/ern27719073963Search in Google Scholar

65. Hirabayashi J. Lectin-based structural glycomics: Glycoproteomics and glycan profiling. Glycoconj J 2004;21:35-40.10.1023/B:GLYC.0000043745.18988.a1Search in Google Scholar

66. Kuno A, Uchiyama N, Koseki-Kuno S, Ebe Y, Takashima S, Yamada M, Hirabayashi J. Evanescent-field fluorescenceassisted lectin microarray: a new strategy for glycan profiling. Nat Methods 2005;2:851-6.10.1038/nmeth80316278656Search in Google Scholar

67. Zhang H, Ohyama K, Boudet J, Chen Z, Yang J, Zhang M, Muranaka T, Maurel C, Zhu JK, Gong Z. Dolichol biosynthesis and its effects on the unfolded protein response and abiotic stress resistance in Arabidopsis. Plant Cell 2008;20:1879-98.10.1105/tpc.108.061150251823718612099Search in Google Scholar

68. Fitchette AC, Gomord V, Chekkafi A, Faye L. Distribution of xylosylation and fucosylation in the plant Golgi apparatus. Plant J 1994;5:673-82.10.1111/j.1365-313X.1994.00673.xSearch in Google Scholar

69. Oxley D, Munro SL, Craik DJ, Bacic A. Structure of Nglycans on the S3- and S6-allele stylar self-incompatibility ribonucleases of Nicotiana alata. Glycobiology 1996;6:611-8.10.1093/glycob/6.6.6118922956Search in Google Scholar

70. Frank J, Kaulfurst-Soboll H, Rips S, von Schaewen A. Comparative analyses of Arabidopsis complex glycan1 mutants and genetic interaction with staurosporin and temperature sensitive3a. Plant Physiol 2008;148:1354-67.10.1104/pp.108.127027257724018768906Search in Google Scholar

71. von Schaewan A, Frank J, Koiwa H. Role of complex N-glycans in plant stress tolerance. Plant Signal Behav 2008;3:871-3.10.4161/psb.3.10.6227263440119704526Search in Google Scholar

72. Seifert GJ, Roberts K. The biology of arabinogalactan proteins. Annu Rev Plant Biol 2007;58:137-61.10.1146/annurev.arplant.58.032806.10380117201686Search in Google Scholar

73. Gomord V, Fitchette AC, Menu-Bouaouiche L, Saint-Jore-Dupas C, Plasson C, Michaud D, Faye L. Plant-specifi cglycosylation patterns in the context of therapeutic protein production. Plant Biotechnol J 2010;8:564-87.10.1111/j.1467-7652.2009.00497.x20233335Search in Google Scholar

74. Arillo A, Margiocco C. Melodia F. The gill sialic acid content as an index of environmental stress in rainbow trout, Salmo gairdneri, Richardson. J Fish Biol 1979;15:405-10.10.1111/j.1095-8649.1979.tb03623.xSearch in Google Scholar

75. Honglertsakul C, Opanuraks J, Kittikowit W, Boonla C, Wunsuwan R, Tosukhowong P. Increased urinary excretions of oxidative stress biomarkers and sialic acid associated with severity of bladder tumors. Thai J Surg 2007;28:133-7.Search in Google Scholar

76. Goswami K, Nandeesha H, Koner BC, Nandakumar DN. A comparative study of serum protein-bound sialic acid in benign and malignant prostatic growth: possible role of oxidative stress in sialic acid homeostasis. Prostate Cancer Prostatic Dis 2007;10:356-9.10.1038/sj.pcan.450096517404581Search in Google Scholar

77. Erdogan HM, Karapehlivan M, Citil M, Atakisi O, Uzlu E, Unver A. Serum sialic acid and oxidative stress parameters changes in cattle with leptospirosis. Vet Res Commun 2008;32:333-9.10.1007/s11259-008-9036-z18247150Search in Google Scholar

Anglais, Slovenian
4 fois par an
Sujets de la revue:
Medicine, Basic Medical Science, other