À propos de cet article

Citez

1. Rao TV. Biofilms in infection. Available from http://www.slideshare.net/doctorrao/biofilms-2172226.Search in Google Scholar

2. Shunmgugaperumal T. Biofilm eradication and prevention, a pharmaceutical approach to medical device infections. Edited by John Wiley & Sons, New Jersey. 2010;3-36;116-151. Available from:www.formatex.info/microbiology3/book/896-905.pdf.Search in Google Scholar

3. Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E, Sintim HO. Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med Chem. 2015;7(4):493–512. DOI: 10.4155/fmc.15.6.10.4155/fmc.15.625875875Search in Google Scholar

4. Donlan RM. Biofilms and device-associated infections. Available from: http://wwwnc.cdc.gov/eid/article/7/2/70-0277_article.10.3201/eid0702.010226263170111294723Search in Google Scholar

5. http://www.escmid.org/research_projects/study_groups/biofilms/presentations_publications/.Search in Google Scholar

6. Hoiby N, Bjarnsholt T, Moser C, Bassi GL, Coenye T, Donelli G, et al. ESCMID guideline for the diagnosis and treatment of biofilm infections 2014. Clin Microbiol Infect. 2015 May;21 Suppl 1:S1-25. DOI: 10.1016/j.cmi.2014.10.024.10.1016/j.cmi.2014.10.02425596784Search in Google Scholar

7. Hope CK, Wilson M. Biofilm structure and cell vitality in a laboratory model of subgingival plaque. J Microbiol Methods. 2006 Sep;66(3):390–8. DOI: 10.1016/j.mimet.2006.01.003.10.1016/j.mimet.2006.01.00316487610Search in Google Scholar

8. Constantine RS, Constantine FC, Rohrich RJ. The ever-changing role of biofilms in plastic surgery. Plast Reconstr Surg. 2014 Jun;133(6):865e-872e. DOI: 10.1097/PRS.0000000000000213.10.1097/PRS.000000000000021324867746Search in Google Scholar

9. Castrillón Rivera LE, Palma RA. Biofilms:A survival and resistance mechanism of microorganisms. Available from:www.intechopen.com.Search in Google Scholar

10. Pace JL, Rupp ME, Finch RG. Biofilms, infection and antimicrobial therapy. Edited by Press Taylor & Francis Group. 2006;39-51.10.1201/9781420028232Search in Google Scholar

11. Vyas KS, Wong LK. Detection of biofilm in wounds as an early indicator for risk for tissue infection and wound chronicity. Ann Plast Surg. 2016 Jan;76(1):127-31. DOI: 10.1097/SAP.0000000000000440.10.1097/SAP.000000000000044025774966Search in Google Scholar

12. Bjarnsholt T. The role of bacterial biofilms in chronic infections. APMIS Suppl. 2013 May;(136):1-51.10.1111/apm.1209923635385Search in Google Scholar

13. Dower R, Turner ML. Pilot study of timing of biofilm formation on closed suction wound drains. Plast Reconstr Surg. 2012;130(5):1141-6. DOI: 10.1097/PRS.0b013e318267d54e.10.1097/PRS.0b013e318267d54e23096614Search in Google Scholar

14. Rouabhia M, Chmielewski W. Diseases associated with oral polymicrobial biofilms. Open Mycol J. 2012;6:27-32. DOI: 10.2174/1874437001206010027.10.2174/1874437001206010027Search in Google Scholar

15. Augustin M, Chifiriuc CB, Lazăr V, Stănescu R, Burlibașa M, Ispas DC. Microbial biofilms in dental medicine in reference to implanto-prostethic rehabilitation. Rev. chir. oro-maxilo-fac. implantol., 2010; 1(1) 9–13.Search in Google Scholar

16. Jacombs A, Tahir S, Honghua H, et al. In vitro and in vivo investigation of the influence of implant surface on the formation of bacterial biofilm in mammary implants. Plast Reconstr Surg. 2014 Apr;133(4):471e-80e. DOI: 10.1097/PRS.0000000000000020.10.1097/PRS.000000000000002024675200Search in Google Scholar

17. Hu H, Johani K, Almatroudi A, Vickery K, Van Natta B, Kadin ME, et al. Bacterial biofilm infection detected in breast implant–associated anaplastic large-cell lymphoma. Plast Reconstr Surg. 2016 Jun;137(6):1659-69. DOI: 10.1097/PRS.0000000000002010.10.1097/PRS.000000000000201026890506Search in Google Scholar

18. Szczotka-Flynn LB, Imamura Y, Chandra J, Yu C, Mukherjee PK, Pearlman E, et al. Increased resistance of contact lens–related bacterial biofilms to antimicrobial activity of soft contact lens care solutions. Cornea. 2009 Sep;28(8):918-26. DOI: 10.1097/ICO.0b013e3181a81835.10.1097/ICO.0b013e3181a81835402014419654521Search in Google Scholar

19. Brothers KM, Nau AC, Romanowski EG, Shanks RM. Dexamethasone diffusion across contact lenses is inhibited by Staphylococcus epidermidis biofilms in vitro. Cornea. 2014 Oct; 33(10):1083-7. DOI: 10.1097/ICO.0000000000000196.10.1097/ICO.0000000000000196415943025090165Search in Google Scholar

20. Sivaraman KR, Hou JH, Chang JH, Behlau I, Cortina MS, Cruz J de L. Scanning electron microscopic analysis of biofilm formation in explanted human Boston type I keratoprostheses. Cornea. 2016 Jan;35(1):25-9. DOI: 10.1097/ICO.0000000000000674.10.1097/ICO.000000000000067426562818Search in Google Scholar

21. Bannister B, Gillespie S, Jones J. Infection:Microbiology and Management. Third Edition. Edited by Blackwell Publishing Ltd, 2006;226-238.Search in Google Scholar

22. Miquel S, Lagrafeuille R, Souweine B, Forestier C. Anti-biofilm Activity as a Health Issue. Front Microbiol. 2016; 7:592. DOI: 10.3389/fmicb.2016.00592.10.3389/fmicb.2016.00592484559427199924Search in Google Scholar

23. Wilson A, Gray D, Karakiozis J, Thomas J. Advanced endotracheal tube biofilm stage, not duration of intubation, is related to pneumonia. J Trauma Acute Care Surg. 2012 Apr;72(4):916-23. DOI: 10.1097/TA.0b013e3182493a10.10.1097/TA.0b013e3182493a1022491605Search in Google Scholar

24. Fernández-Barat L, Ferrer M, Sierra JM, Soy D, Guerrero L, Vila J, et al. Linezolid limits burden of methicillin-resistant Staphylococcus aureus in biofilm of tracheal tubes. Crit Care Med. 2012 Aug;40(8):2385-9. DOI: 10.1097/CCM.0b013e31825332fc.10.1097/CCM.0b013e31825332fc22622402Search in Google Scholar

25. Hell M. Prevention of waterborne infections – what can be done?. Int J Infect Control. 2016;2(Suppl.1):25-26.Search in Google Scholar

26. Kouidhi B, Al Qurashi YMA, Chaieb K. Review drug resistance of bacterial dental biofilm and the potential use of natural compounds as alternative for prevention and treatment. Microb Pathog. 2015 Mar;80:39-49. DOI: 10.1016/j.micpath.2015.02.007.10.1016/j.micpath.2015.02.00725708507Search in Google Scholar

27. Arad E, Navon-Venezia S, Gur E, Kuzmenko B, Glick R, Frenkiel-Krispin D, et al. Novel rat model of methicillin-resistant Staphylococcus aureus–infected silicone breast implants:A study of biofilm pathogenesis. Plast Reconstr Surg. 2013 Feb;131(2):205-14. DOI: 10.1097/PRS.0b013e3182778590.10.1097/PRS.0b013e318277859023076419Search in Google Scholar

28. Lazar V, Chifiriuc MC. Mechanisms and experimental models for the assessment of microbial biofilms’ phenotypical resistance / tolerance. Science against microbial pathogens:communicating current research and technological advances. A. Méndez-Vilas (Ed.), 2011, 906-911.Search in Google Scholar

29. Brackman G., Coenye T. Quorum Sensing Inhibitors as Anti-Biofilm Agents. Current Pharmaceutical Design, 2015;21(1):5-11. DOI: 10.2174/1381612820666140905114627.10.2174/138161282066614090511462725189863Search in Google Scholar

30. Lazar V. Quorum sensing in biofilms--how to destroy the bacterial citadels or their cohesion/power? Anaerobe. 2011;17(6):280-5. DOI: 10.1016/j.anaerobe.2011.03.023.10.1016/j.anaerobe.2011.03.02321497662Search in Google Scholar

31. Deva AK, Adams WP, Vickery K. The role of bacterial biofilms in device-associated infection. Plast Reconstr Surg. 2013 Nov;132(5):1319-28. DOI: 10.1097/PRS.0b013e3182a3c105.10.1097/PRS.0b013e3182a3c10523924649Search in Google Scholar

32. Niu C, Gilbert ES. Colorimetric method for identifying plant essential oil components that affect biofilm formation and structure. Appl Environ Microbiol. 2004;70:6951–6. DOI: 10.1128/AEM.70.12.6951-6956.2004.10.1128/AEM.70.12.6951-6956.200453516415574886Search in Google Scholar

33. Coenye T, Nelisa HJ. In vitro and in vivo model systems to study microbial biofilm formation. J Microbiol Methods. 2010;83(2):89-105. DOI: 10.1016/j.mimet.2010.08.018.10.1016/j.mimet.2010.08.01820816706Search in Google Scholar

34. Zambori C, Morvay AA, Gurban C, Licker M, Tănăsie G, Colibar O, et al. Biofilm formation of Staphylococcus, Streptococcus, Pasteurella and Neisseria strains. Romanian Biotechnological Letters. 2015;20(4):10718-26.Search in Google Scholar

35. Kosikowska U, Głowniak IK, Niedzielski A, Malm A. Nasopharyngeal and adenoid colonization by Haemophilus influenzae and Haemophilus parainfluenzae in children undergoing adenoidectomy and the ability of bacterial isolates to biofilm production. Medicine. 2015 May;94(18):e799. DOI: 10.1097/MD.0000000000000799.10.1097/MD.0000000000000799460252225950686Search in Google Scholar

36. Heersink J, Goeres D. Reactor design considerations. In:Hamilton M, Heersink J, Buckingham-Meyer K, Goeres D. The biofilm laboratory:Step-by-step protocols for experimental design, analysis, and data interpretation. Edited by Cytergy Publishing. 2003;13–15.Search in Google Scholar

37. Busscher HJ, Van der Mei HC. Microbial adhesion in flow displacement systems. Clin Microbiol Rev. 2006;19:127–41. DOI: 10.1128/CMR.19.1.127-141.2006.10.1128/CMR.19.1.127-141.2006136026916418527Search in Google Scholar

38. Hassan A, Usman J, Kaleem F, Omair M, Khalid A, Iqbal M. Evaluation of different detection methods of biofilm formation in the clinical isolates. Braz J Infect Dis. 2011;15(4):305-11. DOI: 10.1590/S1413-86702011000400002.10.1590/S1413-86702011000400002Search in Google Scholar

39. Lemaitre B, Ausubel F. Animal models for host-pathogen interactions. Curr Opin Microbiol. 2008;11:249–50. DOI: 10.1016/j.mib.2008.05.002.10.1016/j.mib.2008.05.00218539076Search in Google Scholar

40. Donlan RM. Biofilms on central venous catheters:is eradication possible?, Curr Top Microbiol Immunol. 2008;322:133–61. DOI: 10.1007/978-3-540-75418-3_7.10.1007/978-3-540-75418-3_718453275Search in Google Scholar

41. Ulphani JS, Rupp ME. Model of Staphylococcus aureus central venous catheter-associated infection in rats. Lab Anim Sci. 1999;49:283–7.Search in Google Scholar

42. Rupp ME, Ulphani JS, Fey PD Mack D. Characterization of Staphylococcus epidermidis polysaccharide intercellular adhesin/hemagglutinin in the pathogenesis of intravascular catheter-associated infection in a rat model. Infect Immun. 1999;67:2656–9.10.1128/IAI.67.5.2656-2659.199911602110225938Search in Google Scholar

43. Nakamoto DA, Haaga JR, Bove P, Merritt K, Rowland DY. Use of fibrinolytic agents to coat wire implants to decrease infection. An animal model. Invest Radiol. 1995;30:341–4. DOI: 10.1097/00004424-199506000-00003.10.1097/00004424-199506000-000037490185Search in Google Scholar

44. Engelsman AF, Van der Mei HC, Francis KP, Busscher HJ, Ploeg RJ, van Dam GM. Real time noninvasive monitoring of contaminating bacteria in a soft tissue implant infection model. J Biomed Mater Res B Appl Biomater. 2009 Jan;88(1):123–9. DOI: 10.1002/jbm.b.31158.10.1002/jbm.b.3115818618733Search in Google Scholar

45. Lebeaux D, Ashwini C, Rendueles O, Beloin C. From in vitro to in vivo models of bacterial biofilm-related infections. Pathogens. 2013 Jun;2(2):288–356. DOI: 10.3390/pathogens2020288.10.3390/pathogens2020288423571825437038Search in Google Scholar

46. Motta JP, Flannigan KL, Agbor TA, Beatty JK, Blackler RW, Workentine ML, et al. Hydrogen sulfide protects from colitis and restores intestinal microbiota biofilm and mucus production. Inflamm Bowel Dis. 2015 May;21(5):1006-17. DOI: 10.1097/MIB.0000000000000345.10.1097/MIB.000000000000034525738373Search in Google Scholar

47. Paraje MG. Confocal scanning laser microscopy in the study of biofilm formation in tissues of the upper airway in otolaryngologic diseases. In:Méndez-Vilas A, Diaz J. Microscopy:Science, Technology, Applications and Education. Edited by FORMATEX. 2010;590-6.Search in Google Scholar

48. Burmeister M, Von Schwanewede H, Stave J, Guthoff RF. Intraoral diagnostics using confocal laser scanning microscopy. Biomed Tech. 2009;54:23-28. DOI: 10.1515/BMT.2009.004.10.1515/BMT.2009.00419182870Search in Google Scholar

49. Kania RE, Lamers GE, Vonk MJ, Huy PT, Hiemstra PS, Bloemberg GV, Grote JJ. Demonstration of bacterial cells and glycocalyx in biofilms on human tonsils. Arch Otolaryngol Head Neck Surg. 2007;133(2):115-121. DOI: 10.1001/archotol.133.2.115.10.1001/archotol.133.2.11517309977Search in Google Scholar

50. Heydorn A, Ersbøll BK, Hentzer M, Parsek MR, Givskov M, Molin S. Experimental reproducibility in flow-chamber biofilms. Microbiology. 2000 Oct;146 (Pt10) :2409-15. DOI: 10.1099/00221287-146-10-2409.10.1099/00221287-146-10-240911021917Search in Google Scholar

51. Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersbøll BK, et al. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology. 2000 Oct;146 (Pt10) :2395–407. DOI: 10.1099/00221287-146-10-2395.10.1099/00221287-146-10-239511021916Search in Google Scholar

52. Tomás I, Henderson B, Diz P, Donos N. In vivo oral biofilm analysis by confocal laser scanning microscopy: methodological approaches. In:Méndez-Vilas A, Diaz J. Microscopy:Science, Technology, Applications and Education. Edited by FORMATEX. 2010;597-606.Search in Google Scholar

53. Sampedro MF, Huddleston PM, Piper KE, Karau MJ, et al. A biofilm approach to detect bacteria on removed spinal implants. Spine (Phila Pa 1976). 2010 May;35(12):1218-24. DOI: 10.1097/BRS.0b013e3181c3b2f3.10.1097/BRS.0b013e3181c3b2f320445479Search in Google Scholar

54. Lazăr V, Chifiriuc MC. Medical significance and new therapeutical strategies for biofilm associated infections. Roum Arch Microbiol Immunol. 2010;69(3):125-38.Search in Google Scholar

55. Chifiriuc MC, Ficai A, Lazar, V AM, Ditu LM, Popa M, Iordache C, Holban AM, Şerban Beresteanu SVG, Grigore R, Lazar V. Soft tissue engineering and microbial infections:Challenges and perspectives, 2016, vol 5, 1-29.10.1016/B978-0-323-42865-1.00001-5Search in Google Scholar

56. Lazar V, Bezirtzouglou E. Microbial biofilms IN Medical sciences. http://www.eolss.net/EolsssampleAllChapter.aspx.Search in Google Scholar

57. György É. Study of the antimicrobial activity and synergistic effect of some plant extracts and essential oils. Rev Romana Med Lab. 2010;18(1):49-56.Search in Google Scholar

58. Dorman HJ, Deans SG. Antimicrobial agents from plants:antibacterial activity of plant volatile oils. J Appl Microbiol. 2000;88(2):308-16. DOI: 10.1046/j.1365-2672.2000.00969.x.10.1046/j.1365-2672.2000.00969.x10736000Search in Google Scholar

59. Rodrigues FF, Costa JG, Coutinho HD. Synergy effects of the antibiotics gentamicin and the essential oil of Croton zehntneri. Phytomedicine. 2009Nov;16(11):1052-5. DOI: 10.1016/j.phymed.2009.04.004.10.1016/j.phymed.2009.04.00419524417Search in Google Scholar

60. Zambori C, Cumpănăşoiu C, Moţ D, Huţu I, Gurban C, Tîrziu E. The antimicrobial role of probiotics in the oral cavity in humans and dogs. Animal Science and Biotechnologies. 2014;47(1):126-30.Search in Google Scholar

61. Sudhakar RR, Swapna LA, Ramesh T, Rajesh TS, Vijayalaxmi N, Lavanya R. Bacteria in oral health – probiotics and prebiotics. Int J Biol Med Res. 2011;2(4):1226-33.Search in Google Scholar

62. Pradeep K, Kuttapa MA, Prassana KR. Probiotics and oral health:an update. SADJ. 2014 Feb;69(1):20-4.Search in Google Scholar

63. Agarwal E, Bajaj P, Guruprasad CN, Naik S, Pradeep AR. Probiotics:a novel step towards oral health. AOSR. 2011;1(2):108-15.Search in Google Scholar

64. Zambori C, Morvay AA, Sala C, Licker M, Gurban C, Tanasie G, et al. Antimicrobial effect of probiotics on bacterial species from dental plaque. J Infect Dev Ctries. 2016 Mar;10(3):214-21. DOI: 10.3855/jidc.6800.10.3855/jidc.680027031452Search in Google Scholar

65. Cotar AI, Chifiriuc MC, Dinu S, Pelinescu D, Banu O, Lazãr V. Quantitative real-time pcr study of the influence of probiotic culture soluble fraction on the expression of pseudomonas aeruginosa quorum sensing genes. Romanian archives of Microbiology and Immunology, 2010; 69(4):213-223.Search in Google Scholar

66. Krespi YP, Stoodley P, Hall-Stoodley L. Laser disruption of biofilm. Laryngoscope. 2008 Jul;118(7):1168-73. DOI: 10.1097/MLG.0b013e31816ed59d.10.1097/MLG.0b013e31816ed59d18401277Search in Google Scholar

67. Mohammad A, Seyed MM, Zahra A, Saranaz AM, Alireza M. A comparison of the antibacterial activity of the two methods of photodynamic therapy (using diode laser 810 nm and LED lamp 630 nm) against Enterococcus faecalis in extracted human anterior teeth. Photodiagnosis Photodyn Ther. 2016;13:233-37. DOI: 10.1016/j.pdpdt.2015.07.171.10.1016/j.pdpdt.2015.07.17126241781Search in Google Scholar

68. de Avila ED, Lima BP, Sekiya T, Torii Y, Ogawa T, Shi W, et al. Effect of UV-photofunctionalization on oral bacterial attachment and biofilm formation to titanium implant material. Biomaterials. 2015 Oct;67:84-92. DOI: 10.1016/j.biomaterials.2015.07.030.10.1016/j.biomaterials.2015.07.030466779226210175Search in Google Scholar

69. Wolcott R, Dowd CWS. The Role of biofilms:are we hitting the right target? Plast Reconstr Surg. 2011 Jan;127(1):28S-35S. DOI: 10.1097/PRS.0b013e3181fca244.10.1097/PRS.0b013e3181fca24421200270Search in Google Scholar

70. Hazer DB, Sakar M, Dere Y, Altinkanat G, Ziyal MI, Hazer B. Antimicrobial effect of polymer-based silver nanoparticle coated pedicle screws:experimental research on biofilm inhibition in rabbits. Spine (Phila Pa 1976). 2016 Mar;41(6):E323-9. DOI: 10.1097/BRS.0000000000001223.10.1097/BRS.000000000000122326571170Search in Google Scholar

eISSN:
2284-5623
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Life Sciences, Molecular Biology, Biochemistry, Human Biology, Microbiology and Virology