Accès libre

Galvanic coupling effects for module-mounting elements of ground-mounted photovoltaic power station

À propos de cet article


This communication reports on the concerns associated with possible generation of galvanic coupling effects for construction materials that are used to manufacture mounting assemblies for ground-mounted photovoltaic (PV) power stations. For this purpose, six macro-corrosion galvanic cells were assembled, including: hot-dip Zn/Magnelis®-coated steel/Al and stainless steel (SS)/Al cells. Corrosion experiments involved continuous, ca. three-month exposure of these couplings in 3 wt.% NaCl solution, conducted at room temperature for a stable pH value of around 8. All corrosion cells were subjected to regular assessment of galvanic current-density and potential parameters, where special consideration was given to compare the corrosion behaviour of Zn-coated steel samples with that of Magnelis®-coated electrodes. Characterization of surface condition and elemental composition for examined materials was carried-out by means of SEM and EDX spectroscopy techniques.

4 fois par an
Sujets de la revue:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering