Accès libre

Measuring and modelling the radiological impact of a phosphogypsum deposition site on the surrounding environment / Mjerenje i modeliranje radiološkog utjecaja odlagališta fosfogipsa na okoliš

À propos de cet article


1. Abril JM, Garcia-Tenorio R, Manjon G. Extensive radioactive characterization of a phosphogypsum stack in SW Spain: 226Ra, 238U, 210Po concentrations and 222Rn exhalation rate. J Hazard Mater 2009;164:790-7. doi: 10.1016/j. jhazmat.2008.08.078Search in Google Scholar

2. Al Attar L, Al-Oudat M, Kanakri S, Budeir Y, Khalily H. Radiological impact of phosphogypsum. J Eviron Manage 2011;92:2151-8. doi: 10.1016/j.jenvman.2011.03.04110.1016/j.jenvman.2011.03.041Search in Google Scholar

3. Rutherford PM, Dudas MJ, Samek RA. Environmental impact of phosphogypsum. Sci Total Environ 1994;149:1-38. doi: 10.1016/0048-9697(94)90002-710.1016/0048-9697(94)90002-7Search in Google Scholar

4. Papastefanou C, Stoulos S, Ioannidou A, Manolopoulou M. The application of phosphogypsum in agriculture ant the radiological impact. J Environ Radioact 2006;89:188-98. doi: 10.1016/j.jenvrad.2006.05.00510.1016/j.jenvrad.2006.05.00516806608Search in Google Scholar

5. Degirmenci N, Okucu A, Turabi A. Application of phosphogypsum in soil stabilization. Build Environ 2007;42:3393-8. doi: 10.1016/j.buildenv.2006.08.01010.1016/j.buildenv.2006.08.010Search in Google Scholar

6. Fuding M, Jiaojiao H, Zude L. Research on activity characteristics on composite cementitious materials based on phosphogypsum. Procedia Engin 2012;43:9-15. doi: 10.1016/j.proeng.2012.08.00310.1016/j.proeng.2012.08.003Search in Google Scholar

7. Kuryatnyk T, Angulsky da Luz C, Ambroise J, Pera J. Valorization of phosphogypsum as hydraulic binder. J Hazard Mater 2008;160:681-7. doi: 10.1016/j.jhazmat.2008.03.01410.1016/j.jhazmat.2008.03.01418433998Search in Google Scholar

8. Reijnders L. Cleaner phosphogypsum, coal combustion ashes and waste incineration ashes for application in building materials: A review. Build Environ 2007;42:1036-42. doi: 10.1016/j.buildenv.2005.09.01610.1016/j.buildenv.2005.09.016Search in Google Scholar

9. Zhou J, Gao H, Shu Z, Wang Y, Yan C. Utilization of waste phosphogypsum to prepare non-fired bricks by novel Hydration-Recrystallization process. Constr Build Mater 2012;34:114-9. doi: 10.1016/j.conbuildmat.2012.02.04510.1016/j.conbuildmat.2012.02.045Search in Google Scholar

10. Bituh T, Marović G, Franić Z, Senčar J, Bronzović M. Radioactive contamination in Croatia by phosphate fertilizer production. J Hazard Mater 2009;162:1199-203. doi: 10.1016/j.jhazmat.2008.06.00510.1016/j.jhazmat.2008.06.00518619732Search in Google Scholar

11. Bituh T, Vučić Z, Marović G, Prlić I. A new approach to determine the phosphogypsum spread from the deposition site into the environment. J Hazard Mater 2013;261:584-92. doi: 10.1016/j.jhazmat.2013.08.01210.1016/j.jhazmat.2013.08.01223994657Search in Google Scholar

12. Marović G. Praćenje stanja radioaktivnosti životne sredine u Republici Hrvatskoj, Izvještaj za 2011. godinu. [Results of environmental radioactivity monitoring in the Republic of Croatia. Annual Report 2011, in Croatian]. Zagreb: Institute for Medical Research and Occupational Health; 2012.Search in Google Scholar

13. Šoštarić M, Petrinec B, Babić D. 137Cs u tlu i oborini Zagrebačke regije [137Cs in soil and fallout of the Zagreb region, in Croatian]. In: Knežević Ž, Majer M, Krajcar Bronić I, editors. Proceedings of the Ninth Symposium of the Croatian Radiation Protection Association; 10-14 Apr 2013; Krk, Croatia. Zagreb: HDZZ-CRPA; 2013. p. 395-400.Search in Google Scholar

14. International Atomic Energy Agency (IAEA). Quantification of Radionuclide Transfer in Terrestrial and Freshwater Environments for Radiological Assessments. TECDOC Series No 1616. Vienna: IAEA; 2009.Search in Google Scholar

15. International Atomic Energy Agency (IAEA). Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Terrestrial and Freshwater Environments. Technical Report Series 472. Vienna: IAEA; 2010.Search in Google Scholar

16. Brown JE, Alfonso B, Avila R, Beresford NA, Copplestone D, Prohl G, Ulanovsky A. The ERICA Tool. J Environ Radioact 2008;99:1371-83. doi: 10/1016/j. jenvrad.2008.01.00810.1016/j.jenvrad.2008.01.008Search in Google Scholar

17. Mrdakovic Popic J, Salbu B, Skipperud L. Ecological transfer of radionuclides and metals to free-living earthworm species in natural habitats rich in NORM. Sci Total Environ 2012;414:167-76. doi: 10.1016/j.scitotenv.2011.10.06410.1016/j.scitotenv.2011.10.064Search in Google Scholar

18. Oughton DH, Stromman G, Salbu B. Ecological risk assessment of Central Asian mining sites: application of the ERICA assessment tool. J Environ Radioact 2013;123:90-8. doi: 10.1016/j.jenvrad.2012.11.01010.1016/j.jenvrad.2012.11.010Search in Google Scholar

19. Petrinec B, Štrok M, Franić Z, Smodiš B, Pavičić-Hamer D. Radionuclides in the Adriatic sea and related dose-rate assessment for marine biota. Radiat Prot Dosim 2013;154:320-30. doi: 10.1093/rpd/ncs23410.1093/rpd/ncs234Search in Google Scholar

20. International Commission on on Radiological Protection (ICRP). Environmental Protection: the Concept and Use of Reference Animals and Plants. 2008 ICRP Publication 108. Ann ICRP 2008;38(4-6).Search in Google Scholar

21. Oughton DH, Aguero A, Avila R, Brown JE, Copplestone D, Gilek M. Addresing uncertainties in the ERICA integrated approach. J Environ Radioact 2008;99:1384-92. doi: 10.1016/j.jenvirad.2008.03.005Search in Google Scholar

22. International Atomic Energy Agency (IAEA). Measurement of Radionuclides in Food and the Environment. Technical Report Series No 295. Vienna: IAEA; 1989.Search in Google Scholar

23. Petrinec B, Franić Z, Bituh T, Babić D. Quality assurance in gamma-ray spectrometry of seabed sediments. Arh Hig Rada Toksikol 2011;62:17-23. doi:10.2478/10004-1254-62-2011-207810.2478/10004-1254-62-2011-2078Search in Google Scholar

24. Wood MD, Marshall WA, Beresford NA, Jones SR, Howard BJ, Copplestone D, Leah RT. Application of the ERICA Integrated Approach to the Drigg coastal sand dunes. J Environ Radioact 2008;99:1484-95. doi:10.1016/j. jenvrad.2008.03.008Search in Google Scholar

25. Beresford N, Brown J, Copplestone D, Garnier-Laplace J, Howard BJ, Larsson C-M, Oughton D, Pröhl G, Zinger I. D-ERICA: An INTEGRATED APPROACH to the assessment and management of environmental risks from ionising radiation. 2007 [displayed 20 February 2015]. Available at in Google Scholar

26. Anderson P, Garnier-Laplace J, Beresford NA, Copplestone D, Howard BJ, Howe P, Oughton D, Whitehouse P. Protection of the environment from ionizing radiation in a regulatory context (protection): proposed numerical benchmark values. J Environ Radioact 2009;100:1100-8. doi: 10.1016/j. jenvrad.2009.05.010Search in Google Scholar

27. International Atomic Energy Agency (IAEA). Effects of Ionizing Radiation on Plants and Animals at Levels Implied by Current Radiation Protection Standards. Technical Report Series No. 332. Vienna: IAEA; 1992.Search in Google Scholar

28. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Sources and Effects of Ionizing Radiation. Report to the general assembly with scientific annex A/AC.82/R.54. New York: United Nations; 1996.Search in Google Scholar

29. Hirchi H, Baccouche S, Belgaied JE. Evaluation of radiological impacts of tenorm in the Tunisian petroleum industry. J Environ Radioact 2013;115:107-13. doi: 10.1016/j.jenvrad.2012.07.01210.1016/j.jenvrad.2012.07.012Search in Google Scholar

30. Szabo Zs, Volgyesi P, Nagy HE, Szabo Cs, Kis Z, Csorba O. Radioactivity of natural and artificial building materials - a comparative study. J Environ Radioact 2013;118:64-74. doi: 10.1016/j.jenvrad.2012.11.00810.1016/j.jenvrad.2012.11.008Search in Google Scholar

31. Farai IP, Ademola JA. Radium equivalent activity concentrations in concrete building blocks in eight cities in Southwestern Nigeria. J Environ Radioact 2005;79:119-25. doi:10.1016/j.jenvrad.2004.05.01610.1016/j.jenvrad.2004.05.016Search in Google Scholar

32. European Council (EC). Directive 2013/59/EURATOM: Basic safety standards for protection against the dangers arising from exposure to ionizing radiation. European Union, Bruxelles, 2014 [displayed 20 February 2015]. Available at in Google Scholar

33. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Exposures from natural radiation sources. Vol. 1. Annex B. New York: United Nations; 2000.Search in Google Scholar

34. Vandenhove H, Vives I Batlle J, Sweeck L. Potential radiological impact of the phosphate industry on wildlife. J Environ Radioactiv 2015;141;1410.1016/j.jenvrad.2014.11.001Search in Google Scholar

35. Azouazi M, Ouahidi Y, Fakhi S, Andres Y, Abbe JCh, Benmansour M. Natural radioactivity in phosphates, phosphogypsum and natural waters in Morocco. J Environ Radioact 2001;54:231-42. doi: 10.1016/S0265-931X(00)00153-310.1016/S0265-931X(00)00153-3Search in Google Scholar

36. Khater AEM, Higgy RH, Pimpl M. Radiological impacts of natural radioactivity in Abu-Tartor phosphate deposits. Egypt. J Environ Radioact 2001;55:255-67. doi: 10.1016/ S0265-931X(00)00193-410.1016/S0265-931X(00)00193-4Search in Google Scholar

37. Mas JL, San Miguel EG, Bolivar JP, Vaca F, Perez-Moreno JP. An assay on the effect of preliminary restoration tasks applied to a large TENORM wastes disposal in the Southwest of Spain. Sci Total Environ 2006;364:55-66. doi: 10.1016/j.scitotenv.2005.11.00610.1016/j.scitotenv.2005.11.00616343599Search in Google Scholar

38. Marović G, Franić Z, Senčar J, Bituh T, Vugrinec O. Mosses and some mushroom species as bioindicators of radiocaesium contamination and risk assessment. Coll Antropol 2008;32(Suppl 2):109-14. PMID: 19138015Search in Google Scholar

39. International Commission on on Radiological Protection (ICRP). Compendium of Dose Coefficients based on ICRP Poblication 60. 2012 ICRP Publication 119. Ann. ICRP 2012;41(Suppl.).10.1016/j.icrp.2012.06.03823025851Search in Google Scholar

40. Santos AJG, Silva PSC, Mazzilli BP, Favaro DIT. Radiological characterization of disposed phosphogypsum in Brazil: Evaluation of the occupational exposure and environmental impact. Radiat Prot Dosim 2006;121:179-85. doi: 10.1093/ rpd/ncl01110.1093/rpd/ncl01116531459Search in Google Scholar

41. Akher P, Rahman K, Orfi SD, Ahmad N. Radiological impact of dietary intakes of naturally occurring radionuclides on Pakistani adults. Food Chem Toxicol 2007;45:272-7. doi: 10.1016/j.fct.2006.08.00610.1016/j.fct.2006.08.00617034921Search in Google Scholar

42. Meli MA, Cantaluppi C, Desideri D, Benedetti C, Feduzi L, Ceccotto F, Fasson A. Radioactivity measurements and dosimetric evaluation in meat of wild and bred animals in central Italy. Food Control 2013;30:272-9. doi: 10.1016/j. foodcont.2012.07.038Search in Google Scholar

43. Varga B. Regulations for radioisotope content in food- and feedstuffs. Food Chem Toxicol 2008;46:3448-57. doi: 10.1016/j.fct.2008.08.01910.1016/j.fct.2008.08.01918790710Search in Google Scholar

44. Santos EE, Lauria DC, Amaral ECS, Rochedo ER. Daily ingestion of 232Th, 238U, 226Ra, 228Ra and 210Pb in vegetables by inhabitants of Rio de Janeiro City. J Environ Radioact 2002;62:75-86. doi: 10.1016/S0265-93X(01)00152-7 Search in Google Scholar

Anglais, Slovenian
4 fois par an
Sujets de la revue:
Medicine, Basic Medical Science, other