Accès libre

Process Optimization Variables for Direct Metal Laser Sintering

À propos de cet article


Manufacturing is crucial to creation of wealth and provision of quality of life. Manufacturing covers numerous aspects from systems design and organization, technology and logistics, operational planning and control. The study of manufacturing technology is usually classified into conventional and non-conventional processes. As it is well known, the term "rapid prototyping" refers to a number of different but related technologies that can be used for building very complex physical models and prototype parts directly from 3D CAD model. Among these technologies are selective laser sintering (SLS) and direct metal laser sintering (DMLS). RP technologies can use wide range of materials which gives possibility for their application in different fields. RP has primary been developed for manufacturing industry in order to speed up the development of new products (prototypes, concept models, form, fit, and function testing, tooling patterns, final products - direct parts). Sintering is a term in the field of powder metallurgy and describes a process which takes place under a certain pressure and temperature over a period of time. During sintering particles of a powder material are bound together in a mold to a solid part. In selective laser sintering the crucial elements pressure and time are obsolete and the powder particles are only heated for a short period of time. SLS uses the fact that every physical system tends to achieve a condition of minimum energy. In the case of powder the partially melted particles aim to minimize their in comparison to a solid block of material enormous surface area through fusing their outer skins. Like all generative manufacturing processes laser sintering gains the geometrical information out of a 3D CAD model. This model is subdivided into slices or layers of a certain layer thickness. Following this is a revolving process which consists of three basic process steps: recoating, exposure, and lowering of the build platform until the part is finished completely.

4 fois par an
Sujets de la revue:
Materials Sciences, Functional and Smart Materials