Acceso abierto

Comparison of the neutronic properties of the (Th-233U)O2, (Th-233U)C, and (Th-233U)N fuels in small long-life PWR cores with 300, 400, and 500 MWth of power


Cite

Fig. 1.

Fuel cell design.
Fuel cell design.

Fig. 2.

Small long-life PWR core design.
Small long-life PWR core design.

Fig. 3.

The effective multiplication factor (keff) for small long-life PWR with (Th-233U)O2 fuel.
The effective multiplication factor (keff) for small long-life PWR with (Th-233U)O2 fuel.

Fig. 4.

The effective multiplication factor (keff) for small long-life PWR with (Th-233U)C fuel.
The effective multiplication factor (keff) for small long-life PWR with (Th-233U)C fuel.

Fig. 5.

The effective multiplication factor (keff) for small long-life PWR with (Th-233U)N fuel.
The effective multiplication factor (keff) for small long-life PWR with (Th-233U)N fuel.

Fig. 6.

Power density distribution for (Th-233U)O2 fuel at 5-6-7%233U, 4.00% 231Pa, and 300 MWth. (a) Radial direction, (b) axial direction (1 mesh = 2.80 cm).
Power density distribution for (Th-233U)O2 fuel at 5-6-7%233U, 4.00% 231Pa, and 300 MWth. (a) Radial direction, (b) axial direction (1 mesh = 2.80 cm).

Fig. 7.

Power density distribution for (Th-233U)C fuel at 4-5-6% 233U, 2.70% 231Pa, and 300 MWth. (a) Radial direction, (b) axial direction (1 mesh = 2.80 cm).
Power density distribution for (Th-233U)C fuel at 4-5-6% 233U, 2.70% 231Pa, and 300 MWth. (a) Radial direction, (b) axial direction (1 mesh = 2.80 cm).

Fig. 8.

Power density distribution for (Th-233U)N fuel at 6–7–8% 233U, 4.35%231Pa, and 300 MWth. (a) Radial direction, (b) axial direction (1 mesh = 2.80 cm).
Power density distribution for (Th-233U)N fuel at 6–7–8% 233U, 4.35%231Pa, and 300 MWth. (a) Radial direction, (b) axial direction (1 mesh = 2.80 cm).

Fig. 9.

Doppler coefficient for the (Th-233U)O2 fuel with the best criticality at 300 MWth, 400 MWth, and 500 MWth with zircaloy-4 and ZIRLO cladding.
Doppler coefficient for the (Th-233U)O2 fuel with the best criticality at 300 MWth, 400 MWth, and 500 MWth with zircaloy-4 and ZIRLO cladding.

Fig. 10.

Doppler coefficient for the (Th-233U)C fuel with the best criticality at 300 MWth, 400 MWth, and 500 MWth with zircaloy-4 and ZIRLO cladding.
Doppler coefficient for the (Th-233U)C fuel with the best criticality at 300 MWth, 400 MWth, and 500 MWth with zircaloy-4 and ZIRLO cladding.

Fig. 11.

Doppler coefficient for the (Th-233U)N fuel with the best criticality at 300 MWth, 400 MWth, and 500 MWth with zircaloy-4 and ZIRLO cladding.
Doppler coefficient for the (Th-233U)N fuel with the best criticality at 300 MWth, 400 MWth, and 500 MWth with zircaloy-4 and ZIRLO cladding.

Fig. 12.

Burnup level of (Th-233U)O2, (Th-233U)C, and (Th-233U)N at 300 MWth power.
Burnup level of (Th-233U)O2, (Th-233U)C, and (Th-233U)N at 300 MWth power.

Fig. 13.

Burnup level of (Th-233U)O2, (Th-233U)C, and (Th-233U)N at 400 MWth power.
Burnup level of (Th-233U)O2, (Th-233U)C, and (Th-233U)N at 400 MWth power.

Fig. 14.

Burnup level of (Th-233U)O2, (Th-233U)C, and (Th-233U)N at 500 MWth power.
Burnup level of (Th-233U)O2, (Th-233U)C, and (Th-233U)N at 500 MWth power.

Power peaking factor for all types of fuel with the best level of criticality

Fuel %233U %231Pa Cladding Power (MWth) BOC MOC EOC
Radial Axial Radial Axial Radial Axial
(Th-233U)O2 5–6–7 4.00 Zircaloy-4 300 1.644 1.323 1.573 1.185 1.698 1. 223
(Th-233U)O2 5–6–7 3.95 Zircaloy-4 400 1.645 1.321 1.586 1.195 1.662 1.277
(Th-233U)O2 6–7–8 5.40 Zircaloy-4 500 1.669 1.271 1.648 1.211 1.732 1.319
(Th-233U)O2 5–6–7 4.00 ZIRLO 300 1.645 1.322 1.574 1.185 1.698 1. 223
(Th-233U)O2 5–6–7 4.00 ZIRLO 400 1.645 1.322 1.587 1.196 1.665 1.279
(Th-233U)O2 6–7–8 5.45 ZIRLO 500 1.669 1.272 1.649 1.211 1.734 1.320
(Th-233U)C 4–5–6 2.70 Zircaloy-4 300 1.631 1.334 1.551 1.182 1.638 1.208
(Th-233U)C 5–6–7 4.00 Zircaloy-4 400 1.631 1.333 1.586 1.184 1.587 1.235
(Th-233U)C 5–6–7 4.00 Zircaloy-4 500 1.631 1.333 1.588 1.195 1.667 1.283
(Th-233U)C 4–5–6 2.70 ZIRLO 300 1.631 1.333 1.552 1.182 1.638 1.208
(Th-233U)C 5–6–7 4.05 ZIRLO 400 1.631 1.333 1.587 1.184 1.589 1.236
(Th-233U)C 5–6–7 4.00 ZIRLO 500 1.632 1.332 1.589 1.195 1.667 1.283
(Th-233U)N 6–7–8 4.35 Zircaloy 4 300 1.649 1.311 1.580 1.185 1.657 1.211
(Th-233U)N 6–7–8 4.35 Zircaloy 4 400 1.649 1.311 1.602 1.188 1.573 1.224
(Th-233U)N 7–8–9 6.05 Zircaloy 4 500 1.667 1.274 1.599 1.190 1.589 1.231
(Th-233U)N 6–7–8 4.35 ZIRLO 300 1.650 1.311 1.580 1.185 1.658 1.211
(Th-233U)N 6–7–8 4.35 ZIRLO 400 1.650 1.311 1.602 1.188 1.575 1. 225
(Th-233U)N 7–8–9 6.05 ZIRLO 500 1.667 1.273 1.600 1.191 1.590 1.232

The neutron energy group used in the calculation

Spectrum type Group Energy range (eV)
Upper Lower
Fast neutron 1 1.000 × 107 1.855 × 100
Thermal neutron 2 1.855 × 100 8.764 × 10–1
3 8.764 × 10–1 4.139 × 10–1
4 4.139 × 10–1 2.770 × 10–1
5 2.770 × 10–1 1.674 × 10–1
6 1.674 × 10–1 8.529 × 10–2
7 8.529 × 10–2 3.060 × 10–2
8 3.060 × 10–2 1.000× 10–5

Design parameters of small long-life PWR

Parameters Specification
Thermal power reactors 300, 400, 500 MWth
Fuel (Th-233U)O2, (Th-233U)C, (Th-233U)N
Cladding structure Zircaloy-4 and ZIRLO
Coolant H2O
Reflector Stainless steel and H2O
Geometry of fuel cell Square cell
Percentage enrichment of 233U 3–9%
Smear density 85%
Fuel volume fraction 60%
Cladding density 6.5 g/cm3
Cladding thickness 0.057 cm
Coolant density 0.72 g/cm3
Pin pitch 1.4 cm
Diameter of active core 224.0 cm
Height of active core 240.8 cm

Excess reactivity for all types of fuel with the best level of criticality

Fuel %233U %231Pa Cladding Power (MWth) Excess reactivity (% dk/k)
BOC EOC Maximum
(Th-233U)O2 5–6–7 4.00 Zircaloy-4 300 0.72 1.08 1.13
(Th-233U)O2 5–6–7 3.95 Zircaloy-4 400 0.96 0.80 1.16
(Th-233U)O2 5–6–7 4.00 ZIRLO 300 0.86 1.21 1.26
(Th-233U)O2 5–6–7 4.00 ZIRLO 400 0.86 0.92 1.23
(Th-233U)C 4–5–6 2.70 Zircaloy-4 300 0.95 0.40 0.95
(Th-233U)C 4–5–6 2.70 ZIRLO 300 1.09 0.53 1.09
(Th-233U)N 6–7–8 4.35 Zircaloy-4 300 0.65 0.22 0.65
(Th-233U)N 6–7–8 4.35 Zircaloy-4 400 0.65 0.01 0.65
(Th-233U)N 7–8–9 6.05 Zircaloy-4 300 0.32 0.99 0.99
(Th-233U)N 6–7–8 4.35 ZIRLO 300 0.76 0.32 0.76
(Th-233U)N 6–7–8 4.35 ZIRLO 400 0.76 0.10 0.76
(Th-233U)N 7–8–9 6.05 ZIRLO 300 0.41 1.08 1.08

The peak power density (watt/cc) for all types of fuel with the best level of criticality

Fuel %233U %231Pa Cladding Power (MWth) BOC MOC EOC
Radial Axial Radial Axial Radial Axial
(Th-233U)O2 5–6–7 4.00 Zircaloy-4 300 27.75 27.75 28.87 28.87 32.86 32.58
(Th-233U)O2 5–6–7 4.00 ZIRLO 300 27.75 27.75 28.88 28.88 32.88 32.61
(Th-233U)C 4–5–6 2.70 Zircaloy-4 300 27.97 27.97 27.59 27.59 31.39 31.39
(Th-233U)C 4–5–6 2.70 ZIRLO 300 27.96 27.96 27.60 27.60 31.40 31.40
(Th-233U)N 6–7–8 4.35 Zircaloy-4 300 27.82 27.82 27.82 27.82 30.27 30.27
(Th-233U)N 6–7–8 4.35 ZIRLO 300 27.74 27.74 27.83 27.83 30.24 30.24
eISSN:
1508-5791
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other