Acceso abierto

Fuzzy Supervised Multi-Period Time Series Forecasting

   | 18 jun 2019

Cite

The goal of this paper is to propose a new method for fuzzy forecasting of time series with supervised learning and k-order fuzzy relationships. In the training phase based on k previous historical periods, a multidimensional matrix of fuzzy dependencies is constructed. During the test stage, the fitted fuzzy model is run for validating the observations and each output value is predicted by using a fuzzy input vector of k previous intervals. The proposed algorithm is verified by a benchmark dataset for fuzzy time series forecasting. The results obtained are similar or better than those of other fuzzy time series prediction methods. Comparative analysis shows the high potential of the new algorithm as an alternative to fuzzy prediction and reveals some opportunities for its further improvement.

eISSN:
1314-4081
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Informática, Tecnologías de la información