Winter wheat is one of the widespread crops in Ukraine. The search for methods to increase the yield and consumer properties of wheat, without compromising environmental safety, is one of the important scientific problems. The principles of precision agriculture point to the proper positioning of the seeds, recommending the method of “upward germination” (positioning the wheat germ vertically). The main objective of this study was to develop a new geometric model of wheat grain with a displaced centre of mass, as well as to conduct the theoretical research and numerical experiments on the orientation of grains using their multiple impact interaction with inclined surfaces. A new model of germ consisting of two different end semispheres and amid-line truncated cone was proposed, with a displaced centre of mass. Taking into account the physical properties of the objects, the concept of arrangement of gravity orientation of seeds in a stream was applied. This concept was based on various ratios of kinetic parameters of bodies with a displaced centre of gravity following an impact. The results showed that the orientation process can be controlled by changing the inclination angles and the length of the walls of the tray orientator within the working velocity range. This must be done before impact interaction of 0.2-0.3 m s−1 when the inclination angles of the impact interaction planes are 24-32°C.