Cite

Big Data Applications with Scheduling becomes an active research area in last three years. The Hadoop framework becomes very popular and most used frameworks in a distributed data processing. Hadoop is also open source software that allows the user to effectively utilize the hardware. Various scheduling algorithms of the MapReduce model using Hadoop vary with design and behavior, and are used for handling many issues like data locality, awareness with resource, energy and time. This paper gives the outline of job scheduling, classification of the scheduler, and comparison of different existing algorithms with advantages, drawbacks, limitations. In this paper, we discussed various tools and frameworks used for monitoring and the ways to improve the performance in MapReduce. This paper helps the beginners and researchers in understanding the scheduling mechanisms used in Big Data.

eISSN:
1314-4081
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Informática, Tecnologías de la información