1. Alavanja MCR. Pesticides Use and Exposure Extensive Worldwide. Rev. Environ. Health 2009;24:303-9. doi: 10.1515/REVEH.2009.24.4.303Search in Google Scholar

2. Alavanja MCR, Hoppin J, Kamel F. Health effects of chronic pesticide exposure: cancer and neurotoxicity. Annu Rev Public Health 2004;25:155-97. doi: 10.1146/annurev. publhealth.25. 101802.123020Search in Google Scholar

3. USEPA. ECOTOX: Ecotoxicology database. USEPA/ORD/ NHEERL, Mid-Continent Ecology Division, 2004 [displayed 18 October 2016]. Available at in Google Scholar

4. Ündeğer Ü, Başaran N. Effects of pesticides on human peripheral lymphocytes in vitro: induction of DNA damage. Arch Toxicol 2005;79:169-76. doi: 10.1007/s00204-004-0616-6Search in Google Scholar

5. The Federal Commission for the Protection against Sanitary Risk (COFEPRIS) [displayed 26 August 2016]. Available at in Google Scholar

6. Međimurje. Wolly apple aphid in apple crops [Krvava uš u nasadima jabuke, in Croatian] [displayed 17 August 2016]. Available at in Google Scholar

7. Soloneski S, Larramendy ML. Sister chromatid exchanges and chromosomal aberrations in Chinese hamster ovary (CHO-K1) cells treated with the insecticide pirimicarb. J Hazard Mater 2010;174:410-5. doi: 10.1016/j. jhazmat.2009.09.068Search in Google Scholar

8. World Health Organization (WHO). The WHO recommended classification of pesticides by hazard and guidelines to classification: 2004. Geneva: WHO; 2004.Search in Google Scholar

9. World Health Organization (WHO). The WHO recommended classification of pesticides by hazard and guidelines to classification: 2009. Geneva: WHO; 2009.Search in Google Scholar

10. US Environmental Protection Agency (US EPA). Chemicals evaluated for carcinogenic potential. Office of Pesticide Programs, U.S. Environmental Protection Agency. Annual Cancer Report 2015 Washington (DC): US EPA; 2015. p. 1-34. [displayed 19 October 2016]. Available at in Google Scholar

11. World Health Organization and Food and Agriculture Organization (WHO-FAO). Primicarb. In: Pesticides residues in food - 2004, FAO plant production and protection paper. Rome: WHO-FAO; 2004. P. 154-61.Search in Google Scholar

12. Sultatos LG. Interactions of organophosphorous and carbamate compounds with cholinesterases, In: Gupta RC, editor. Toxicology of organophosphorus and carbamate compounds. Burlington: Elsevier Academic Press; 2008. p 209-18.10.1016/B978-012088523-7/50016-8Search in Google Scholar

13. Lin N, Garry VF. In vitro studies of cellular and molecular developmental toxicity of adjuvants, herbicides, and fungicides commonly used in Red River Valley, Minnesota. J Toxicol Environ Health A 2000;60:423-39. doi: 10.1080/00984100050033494Search in Google Scholar

14. Rayburn AL, Moody D, Freeman JL. Cytotoxicity of technical grade versus formulations of atrazine and acetochlor using mammalian cells. Bull Environ Contam Toxicol 2005;75:691-8. doi: 10.1007/s00128-005-0807-8Search in Google Scholar

15. Želježić D, Garaj-Vrhovac V, Perković P. Evaluation of DNA damage induced by atrazine and atrazine-based herbicide in human lymphocytes in vitro using a comet and DNA diffusion assay. Toxicol In Vitro 2006;20:923-35. doi: 10.1016/ j. tiv.2006.01.017Search in Google Scholar

16. Soloneski S, Reigosa MA, Molinari G, González NV, Larramendy ML. Genotoxic and cytotoxic effects of carbofuran and furadan® on Chinese hamster ovary (CHOK1) cells. Mutat Res 2008;656:68-73. doi: 10.1016/j. mrgentox.2008.07.007Search in Google Scholar

17. Vera-Candioti J, Natale G, Soloneski S, Ronco AE, Larramendy ML. Sublethal and lethal effects on Rhinella arenarum (Anura, Bufonidae) tadpoles exerted by the pirimicarb-containing technical formulation insecticide Aficida®. Chemosphere 2010;78:249-55. doi: 10.1016/j. chemosphere.2009. 10.064Search in Google Scholar

18. Vera-Candioti J, Soloneski S, Larramendy ML. Genotoxic and cytotoxic effects of the formulated insecticide Aficida® on Cnesterodon decemmaculatus (Jenyns, 1842) (Pisces: Poeciliidae). Mutat Res 2010;703:180-6. doi: 10.1016/j. mrgentox.2010.08.018Search in Google Scholar

19. US Environmental Protection Agency (US EPA). Guidance on cumulative risk assessment of pesticide chemicals that have a common mechanism of toxicity. Washington (DC): US EPA; 2002.Search in Google Scholar

20. Aguirrezabalaga I, Santamaría I, Comendador MA. The w/ w+ SMART is a useful tool for the evaluation of pesticides. Mutagenesis 1994;9:341-6. PMID: 796857610.1093/mutage/9.4.3417968576Search in Google Scholar

21. Vera-Candioti J, Soloneski S, Larramendy ML. Single-cell gel electrophoresis assay in the ten spotted live-bearer fish, Cnesterodon decemmaculatus (Jenyns, 1842), as bioassay for agrochemical-induced genotoxicity. Ecotoxicol Environ Saf 2013;98:368-73. doi: 10.1016/j.ecoenv.2013.08.011Search in Google Scholar

22. Pilinskaia MA. [Cytogenetic effect of the pesticide pirimor in a lymphocyte culture of human peripheral blood in vivo and in vitro, in Russian]. Tsitol Genet 1982;16:38-42. PMID: 7101449Search in Google Scholar

23. Takehisa S, Kanaya N, Rieger R. Promutagen activation by Vicia faba: An assay based on the induction of sister chromatid exchanges in Chinese hamster ovary cells. Mutat Res 1988;197:195-205. doi: 10.1016/0027-5107(88)90093-0Search in Google Scholar

24. Gómez-Arroyo S, Calderón-Segura ME, Villalobos-Pietrini R. Sister chromatid exchange in human lymphocytes induced by propoxur following plant activation by Vicia faba. Environ Mol Mutagen 1995;26:324-30. doi: 10.1002/em.2850260408Search in Google Scholar

25. Vera-Candioti J, Soloneski S, Larramendy ML. Pirimicarbbased formulation-induced genotoxicity and cytotoxicity on the freshwater fish Cnesterodon decemmaculatus (Jenyns, 1842) (Pisces, Poeciliidae). Toxicol Ind Health 2015;31:1051-60. doi: 10.1177/0748233713486958Search in Google Scholar

26. Mesnage R, Defarge N, Spiroux de Vendômois J, Séralini GE. Major pesticides are more toxic to human cells than their declared active principles. Biomed Res Int 2014;2014:179691. doi: 10.1155/2014/179691Search in Google Scholar

27. Organisation for Economic Co-operation and Development (OECD). Test No. 479: Genetic Toxicology: In vitro Sister Chromatid Exchange Assay in Mammalian Cells. OECD Guidelines for the Testing of Chemicals, Section 4. Paris: OECD Publishing; 1986.Search in Google Scholar

28. Tempelaar MJ, De Both MTJ, Versteegh JEG. Measurement of SCE frequencies in plants: a simple Feulgen staining procedure for Vicia faba. Mutat Res 1982;103:321-6. doi: 10.1016/0165-7992(82)90061-6Search in Google Scholar

29. Gómez-Arroyo S, Villalobos-Pietrini R. Chromosomal aberrations and sister chromatid exchanges in Vicia faba as genetic monitors of environmental pollutants. In: Butterworth FM, Corkum LD, Guzmán-Rincón J, editors. Biomonitors and biomarkers as indicator of environmental change. New York (NY): Plenum Press; 1995. p. 95-113.Search in Google Scholar

30. González Borroto JI, Pérez G, Creus A, Marcos R. Genotoxicity testing of the furylethylene derivative 1-(5-bromofur-2-yl)-2-bromo-2-nitroethene in cultured human lymphocytes. Food Chem Toxicol 2004;42:187-93. doi: 10.1016/j.fct.2003.08.012Search in Google Scholar

31. Turkez H. The role of ascorbic acid on titanium dioxideinduced genetic damage assessed by the comet assay and cytogenetic tests. Exp Toxicol Pathol 2011;63:453-7. doi: 10.1016/j.etp.2010.03.004Search in Google Scholar

32. Gil da Costa RM, Coelho P, Sousa R, Bastos MM, Porto B, Teixeira JP, Malheiro I, Lopes C. Multiple genotoxic activities of ptaquiloside in human lymphocytes: aneugenesis, clastogenesis and induction of sister chromatid exchange. Mutat Res 2012;747:77-81. doi: 10.1016/j. mrgentox.2012.04.010Search in Google Scholar

33. Perry P, Wolff S. New Giemsa method for the differential staining of sister chromatids. Nature (London) 1974;258:156-8. doi: 10.1038/251156a0Search in Google Scholar

34. Lamberti L, Bigatti PP, Ardito G. Cell kinetics and sisterchromatid- exchange frequency in human lymphocytes. Mutat Res 1983;120:193-9. doi: 10.1016/0165-7992(83)90163-XSearch in Google Scholar

35. Morgan WF, Crossen PE. Factors influencing sister-chromatid exchange rate in cultured human lymphocytes. Mutat Res 1981;81:395-402. doi: 10.1016/0027-5107(81)90126-3Search in Google Scholar

36. Speit G, Durin R, Mehnert K. Variations in the frequency of sister chromatid exchange in repeated human lymphocyte cultures. Hum Genet 1986;72:179-81. doi: 10.1007/ BF00283943Search in Google Scholar

37. Gómez-Arroyo S, Calderón-Segura ME, Villalobos-Pietrini R. Biomonitoring of pesticides by plant metabolism: an assay base on the induction of sister-chromatid exchanges in human lymphocyte cultures by promutagen activation of Vicia faba. In: Butterworth FM, Gunatilaka A, Gonsebatt ME, editors. Biomonitors and biomarkers as indicators of environmental change. Vol 2. New York: Plenum Press; 2000. p. 439-55.10.1007/978-1-4615-1305-6_23Search in Google Scholar

38. Calderón-Segura ME, Gómez-Arroyo S, Villalobos-Pietrini R, Espinosa-Ramírez M. In vivo and in vitro promutagen activation by Vicia faba of thiocarbamate herbicides molinate and butylate to products inducing sister chromatid exchanges in human lymphocyte cultures. Mutat Res 1999;438:81-8. doi: 10.1016/S1383-5718(98)00152-1Search in Google Scholar

39. Flores-Maya S, Gómez-Arroyo S, Calderón-Segura ME, Villalobos-Pietrini R, Waliszewski SM, Gómez de la Cruz L. Promutagen activation of triazine herbicides metribuzin and ametryn through Vicia faba metabolism inducing sister chromatid exchanges in human lymphocytes in vitro and in V. faba root tip meristems. Toxicol In Vitro 2005;19:243-51. doi: 10.1016/j.tiv.2004.09.002Search in Google Scholar

40. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248-54. doi: 10.1016/0003-2697(76)90527-3Search in Google Scholar

41. Ames BN, McCann J, Yamasaki E. Methods for detecting carcinogens and mutagens with the salmonella/mammalianmicrosome mutagenicity test. Mutat Res 1975;31:347-63. doi: 10.1016/0165-1161(75)90046-1Search in Google Scholar

42. Frantz CN, Malling HV. The quantitative microsomal mutagenesis assay. Mutat Res 1975;31:365-80. doi: 10.1016/0165-1161(75)90047-3Search in Google Scholar

43. Bradley MO, Bhuysn B, Francis MC, Langenbach R, Peterson A, Huberman E. Mutagenesis by chemical agents in V79 Chinese hamster cells: a review and analysis of the literature. A report of the Gene-Tox program. Mutat Res 1981;87:81-142. doi: 10.1016/0165-1110(81)90029-4Search in Google Scholar

44. Bolognesi C. Genotoxicity of pesticides: a review of human biomonitoring studies. Mutat Res 2003;543:251-72. doi: 10.1016/S1383-5742(03)00015-2Search in Google Scholar

45. Knasmüller S, Mersch-Sundermann V, Kevekordes S, Darroudi F, Huber WW, Hoelzl C, Bichler J, Majer BJ. Use of human-derived liver cell lines for the detection of environmental and dietary genotoxicants; current state of knowledge. Toxicol In Vitro 2004;20:315-28. doi: 10.1016/j. tox.2004.02.008Search in Google Scholar

46. Kirsch-Volders M, Vanhauwaert A, Eichenlaub-Ritter U, Decordier I. Indirect mechanisms of genotoxicity. Toxicol Lett 2003;140-141:63-74. doi: 10.1016/S0378-4274(02)00498-8Search in Google Scholar

47. International Programme on Chemical Safety, WHO Task Group on Carbamate Pesticides. Carbamate pesticides: A general introduction. Environmental Health Criteria 64. Geneva: WHO; 1986.Search in Google Scholar

48. Food and Agriculture Organization of the United Nations. Pirimicarb (101). AGP - P - List of Pesticide Evaluated by JMPR and JMPS, 2006 [displayed 19 October 2016]. Available at in Google Scholar

49. US Environmental Protection Agency (US EPA). Pesticide Fact Sheet: Pirimicarb. Washington (DC): US Government Printing Office; 1974.Search in Google Scholar

50. Zhang G, Hu X, Pan J. Spectroscopic studies of the interaction between pirimicarb and calf thymus DNA. Spectrochim Acta Part A Mol Biomol Spectrosc 2011;78:687-94. doi: 10.1016/j.saa.2010.11.050Search in Google Scholar

51. Soloneski S, Kujawski M, Scuto A, Larramendy ML. Carbamates: a study on genotoxic, cytotoxic, and apoptotic effects induced in Chinese hamster ovary (CHO-K1) cells. Toxicol In Vitro 2015;29:834-44. doi: 10.1016/j.tiv.2015.03.011Search in Google Scholar

52. Gómez-Arroyo S, Cortés-Eslava J, Villalobos-Pietrini R, Calderón-Segura ME, Flores-Márquez AR, Espinosa-Aguirre JJ. Differential mutagenic response of Salmonella typhimurium to the plant-metabolized organophosphorus insecticides, phoxim and azinphos methyl. Toxicol In Vitro 2007;21:950-5. doi: 10.1016/j.tiv.2007.01.027Search in Google Scholar

53. Cortés-Eslava J, Gómez-Arroyo S, Arenas-Huertero F, Flores- Maya S, Díaz-Hernández ME, Calderón-Segura ME, Valencia- Quintana R, Espinosa-Aguirre JJ, Villalobos-Pietrini R. The role of plant metabolism in the mutagenic and cytotoxic effects of four organophosphorus insecticides in Salmonella typhimurium and in human cell lines. Chemosphere 2013;92:1117-25. doi: 10.1016/j.chemosphere.2013.01.058Search in Google Scholar

54. Gentile JM, Plewa MJ. The use of cell-free systems in plant activation studies. Mutat Res 1988;197:173-82. doi: 10.1016/0027-5107(88)90091-7Search in Google Scholar

55. Lamoureux GL, Frear DS. Pesticide metabolism in higher plants: in vitro enzyme studies. In: Paulson DG, Frear DS, Marks EP, editors. Xenobiotic metabolism: in vitro methods. Washington (DC): American Chemical Society; 1979. p. 77-128.10.1021/bk-1979-0097.ch003Search in Google Scholar

56. Plewa MJ, Gichner T, Xin H, Seo KY, Smith SR, Wagner ED. Biochemical and mutagenic characterization of plantactivated aromatic amines. Environ Toxicol Chem 1993;12:1353-63. doi: 10.1002/etc.5620120805Search in Google Scholar

57. Lane DP. p53, guardian of the genome. Nature 1992;358:15-6. doi: 10.1038/358015a0Search in Google Scholar

58. Orren DK, Petersen LN, Bohr VA. A UV-responsive G2 checkpoint in rodent cells. Mol Cell Biol 1995;15:3722-30. doi: 10.1128/MCB.15.7.3722Search in Google Scholar

59. Brand RM, Mueller C. Transdermal penetration of atrazine, alachlor, and trifluralin: effect of formulation. Toxicol Sci 2002;68:18-23. doi: 10.1093/toxsci/68.1.18Search in Google Scholar

60. González NV, Soloneski S, Larramendy ML. The chlorophenoxy herbicide dicamba and its commercial formulation banvel induce genotoxicity in Chinese hamster ovary cells. Mutat Res 2007;634:60-8. doi:10.1016/j. mrgentox.2007.06.001Search in Google Scholar

61. González NV, Soloneski S, Larramendy ML. Dicambainduced genotoxicity on Chinese hamster ovary (CHO) cells is prevented by vitamin E. J Hazard Mater 2009;163:337-43. doi: 10.1016/j.jhazmat.2008.06.097Search in Google Scholar

62. Molinari G, Soloneski S, Reigosa MA, Larramendy ML. In vitro genotoxic and cytotoxic effects of ivermectin and its formulation ivomec® on Chinese hamster ovary (CHOK1) cells. J Hazard Mater 2009;165:1074-82. doi: 10.1016/j. jhazmat.2008.10.083Search in Google Scholar

63. Soloneski S, Larramendy ML. Genetic Toxicological Profile of carbofuran and pirimicarb carbamic insecticides. In: Perveen F, editor. Insecticides-pest engineering. INTECH Open Access Publisher 2012. p. 519-38. 10.5772/30137Search in Google Scholar

Inglés, Slovenian
Calendario de la edición:
4 veces al año
Temas de la revista:
Medicine, Basic Medical Science, other