Medium-carbon alloy steels containing different aluminum contents were hot forged by 95% reduction at 1200°C followed by air cooling. Optical and scanning electron microscopes were used to investigate the morphologies of the different phases present. An austentizing process followed by water quenching (after hot forging) was carried out to obtain different hardness values. The intensity of the different planes was investigated using X-ray diffraction. The mechanical properties were characterized using tensile and hardness tests. Optical and scanning electron micrographs revealed a great effect of aluminum content on the steel properties. A matrix of bainite and pearlite and traces of ferrite was revealed for hot forged steel type 1 containing 1% Al. Steel type 2 containing 2% Al showed a matrix of pearlite and ferrite with the absence of bainite. The hardness increased with increasing the temperature to a maximum value then decreased for steel containing 1 and 2% aluminum. After austentizing at 925°C, the maximum hardness of 649Hv was recorded for hot forged steel type 2 of 2% aluminum, while steel type 1 of 1% aluminum showed a maximum hardness of 531Hv after austentizing at 1000°C. Thus, the maximum hardness of hot forged steels decreased with increasing aluminum content. In addition, the maximum tensile and yield strength were decreased by increasing the aluminum content in the steel. The changes in microstructure and mechanical properties of these steels could be explained by the effect of aluminum as a ferrite forming element.

Calendario de la edición:
4 veces al año
Temas de la revista:
Materials Sciences, Functional and Smart Materials