
�

�
�����������	
��	�����
��

DOI: 10.2478/tmmp-2014-0025
Tatra Mt. Math. Publ. 60 (2014), 57–83

OVERVIEW OF THE MCELIECE CRYPTOSYSTEM

AND ITS SECURITY

Marek Repka — Pavol Zajac

ABSTRACT. McEliece cryptosystem (MECS) is one of the oldest public key

cryptosystems, and the oldest PKC that is conjectured to be post-quantum se-
cure. In this paper we survey the current state of the implementation issues and
security of MECS, and its variants. In the first part we focus on general decoding
problem, structural attacks, and the selection of parameters in general. We sum-
marize the details of MECS based on irreducible binary Goppa codes, and review

some of the implementation challenges for this system. Furthermore, we survey
various proposals that use alternative codes for MECS, and point out some at-
tacks on modified systems. Finally, we review notable existing implementations
on low-resource platforms, and conclude with the topic of side channels in the
implementations of MECS.

1. Introduction

R. J. M c E l i e c e proposed in 1978 [37] a new public key cryptosystem
based on the theory of algebraic codes, now called the McEliece Cryptosystem
(MECS). Unlike RSA, it was not adopted by the implementers, mainly due
to large public key sizes. The interest of researchers in MECS increased with
the advent of quantum computing. Unlike systems based on integer factorisation
problem and discrete logarithm problem, MECS security is based on the general
decoding problem which is NP hard and should resist also attackers with access
to the quantum computer.

In this article we provide an overview of the MECS, in its original form, and
its alternatives. We start with the overview of the original system, basic attacks
based on general decoding problem, and a brief overview of structural attacks.
We conclude this section with a brief summary of MECS parameter selection.

c© 2014 Mathematical Institute, Slovak Academy of Sciences.
2010 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: 94A60, 68P25.
Keywords: post-quantum cryptography, McEliece cryptosystem, side-channel attacks.
Support by NATOs Public Diplomacy Division in the framework of “Science for Peace”,

Project MD.SFPP 984520, is acknowledged.

57

MAREK REPKA — PAVOL ZAJAC

In Section 3 we focus on CCA2-security conversions (i.e., a padding) that can pre-
vent some of the attacks on basic MECS and lead to semantically secure versions
of MECS. In Section 4 we provide more details for MECS based on irreducible
binary Goppa codes, including an overview of the implementation options. Sec-
tion 5 is an overview of MECS variants that use different codes. In Section 6
we provide a brief overview of selected MECS implementations on platforms with
limited computational resources. Finally, in Section 7 we provide an overview
of known side-channel attacks on MECS implementations.

2. McEliece cryptosystem and its security

Let G be a k × n generator matrix of a code C, for which there is an efficient
algorithm DecC that can decode any codeword with up to t errors. Let S be
a random non-singular k× k matrix, and let P be a random n× n permutation
matrix.

(Generalized) McEliece cryptosystem (MECS) is defined as follows:

Secret key: (DecC, S, P)

Public key: G′ = S ·G · P
Encryption: Let m be a k-bit message, and let e be an random n-bit vector

with wH(e) ≤ t. Then c = m ·G′ + e is a ciphertext.

Decryption: Decryption is given by the following algorithm:

1: c′ ← c · P−1

2: m′ ← DecC(c′)
3: m← m′ · S−1

Public key of MECS is a generator matrix G′ of some linear code C′, which is
permutation equivalent to C. MECS hides a message by transmitting a codeword
of C′ given by mG′ = m · S · G · P , further masked by an artificial error vector
e. The weight of the error vector is not changed under codeword permutation.
Thus the legitimate recipient can reverse the secret permutation P and decode
the resulting codeword of C. Finally, he can recover the original message by in-
verting the linear transform given by S.

2.1. Generic attacks based on information set decoding

There are two basic security assumptions for the classical McEliece cryptosys-
tem:

(1) It is difficult to find a codeword of an arbitrary linear code with minimum
distance to a given vector (general decoding problem). This problem is
known to be NP-hard [4].

(2) There is no algorithm that can decode codewords in C′ (without the knowl-
edge of secret parameters) more efficiently than in an arbitrary linear code.

58

OVERVIEW OF THE MCELIECE CRYPTOSYSTEM AND ITS SECURITY

The second assumption does not seem to hold in general for an arbitrary
choice of C (see Section 5). The original version of MECS [37] is based on irre-
ducible binary G o p p a codes [28] (see Section 4), for which the assumption 2
seems to hold. We remark that these two assumptions are not sufficient for
a secure cryptosystem, see Section 3 for more details.

Although general decoding problem is NP hard, a careful choice of system
parameters (n, k, t) is required to ensure that the (estimated) security level
of MECS is high enough. The security level of MECS is estimated by the ef-
ficiency of the so-called (generalized) information-set decoding (ISD) attack.
There are many variants of the ISD attack.

The basic form of the attack was already introduced by M c E l i e c e in [37]:
Select k out of n coordinates of c in such a way, that no errors affect the selected
coordinates. This can be done with probability roughly (1− t/n)k. The message
can then be found by simple linear algebra (by solving k linear equations in k
unknowns). Estimated running time of the attack is then k3(1 − t/n)−k. L e e
and B r i c k e l l in [34] observed that k selected coordinates do not need to be
error free. If the number of errors in the selected k coordinates is limited to some
small bound j, a more efficient general decoding algorithm can be implemented.
The work factor depends on j. For j = 0, a classical ISD attack is obtained.
On the other hand, if we increase bound j to t, we get a brute force search
through all error vectors with complexity O(nt). There are various improved
versions of the algorithm using probabilistic selection of error positions [13],
[14], [35], [68]. The selection of optimal j, as well as the estimate of the work
factor depends on the actual version of the algorithm.

S t e r n’ s attack [58] uses a slightly different formulation of the problem.
The ciphertext c = mG′+ e is at distance t from codewords of C′. However,
the minimal distance of C′ is at least 2t + 1, as it is a permutation equivalent
to C, which can correct up to t errors. Let us construct a new matrix

A =

(
G′

c

)
.

The new code A generated by A has minimum distance t, and the only vector
with weight t in A is the unknown error vector e (which is required to decode
a hidden message m). The goal of the attack is to find the shortest vector in A,
with known weight t. The Stern’s attack works with parity-check matrix H
of the code. If the attacker can find a suitable set of t columns ofH that sums to 0,
he can immediately reconstruct e. The suitable set is found by normalizing H,
precomputing sums of groups of j columns of H (corresponding to j in previous
ISD attack in complexity analysis), and looking for collisions. The situation
is illustrated in Figure 1. If no suitable collision is found, columns of H are
permuted, and the attack is repeated. The method of B e r n s t e i n et al. [6]

59

MAREK REPKA — PAVOL ZAJAC

Figure 1. Illustration of Stern’s attack.

uses more partitions of H, and more advanced methods to permute H and
process collisions and vector sums.

The complexity of decoding general linear codes depends on all three code pa-
rameters (n, k, d=2t+ 1). It is conjectured that the best generic decoding algo-
rithm takes exponential time for any constant asymptotic code rate R=k/n and
constant asymptotic relative distance D=d/n. I.e., time complexity can be ex-
pressed as 2(α(R,D)+o(1))n for some positive real number α(R,D) as n→ inf [7].
With relative distance D=0.04 and rate R=0.7577 typical for McEliece cryp-
tosystem, Stern’s attack complexity can be upper bounded by α = 0.0809 [3].
Recently, a series of new attacks: Ball decoding by B e r n s t e i n, L a n g e and
P e t e r s [7], algorithm based on subset sum problem by M a y, M e u r e r and
T h om a e [36], and its improvement by B e c k e r, J o u x et al. [3], have de-
creased this constant to α = 0.0672. The non-asymptotic estimates of the
ISD complexities for typical McEliece cryptosystem parameters are summarized
in [30].

We remark that the complexity of ISD is lower, when the attacker only needs
to decode one out of many cryptograms. An analysis by S e n d r i e r [53] shows

that ISD attacks can be speeded up by almost
√
N using N instances of the

problem. When the attacker has access to an unlimited number of instances,
the complexity exponent is multiplied by value only slightly larger than 2/3.
This type of attack scenario is critical for various compact versions of MECS,
especially when considering quasi-cyclic variants (see Section 5) where any block-
wise cyclic shift of the syndrome provides a proper new instance of the decoding
problem.

60

OVERVIEW OF THE MCELIECE CRYPTOSYSTEM AND ITS SECURITY

2.2. Attacks on the secret key

Information set decoding represents the most efficient generic method to at-
tack MECS via the general decoding problem. ISD methods try to decode a single
encrypted message, and the attacker learns no information about the secret key.

Other types of attacks (so called structural attacks) target the code structure
with the goal of reconstructing the secret key from a given public key. In MECS,
the secret code with efficient decoding algorithm, and the public code are per-
mutation equivalent, i.e., their codewords are just bit-wise permuted (by a secret
permutation P). If the attacker knows the secret code, the permutation between
two permutation equivalent linear codes can be reconstructed by the polynomial
time support splitting algorithm [51]. The support splitting algorithm can be
also used, if the secret code is taken from only a small set of admissible codes.
E.g., in a traditional MECS based on Goppa codes (see section 4), the decoding
algorithm is defined by the (secret) Goppa polynomial. If the set of possible
Goppa polynomials is restricted to a set of irreducible polynomials with binary
coefficients, the key space is too small to resist the attack based on enumerat-
ing potential binary Goppa polynomials and verifying the guess by the support
splitting algorithm. However, if the coefficients of the Goppa polynomial are
taken from a larger field, the keyspace becomes too large for an efficient support
splitting attack.

Another type of key recovery is based on algebraic cryptanalysis [24], [67].
The problem of secret key recovery is rewritten as a system of polynomial equa-
tions parametrized by the public key. The solution of the system yields the un-
known secret key. Algebraic methods can be used to break proposed McEliece
variants with compact public keys [23]. Moreover, algebraic methods allow to dis-
tinguish generator matrices of high rate binary Goppa codes1 from a generator
matrix of a random linear code [21].

2.3. Recommended parameters

Original parameters n=1024, k=524, t=50, suggested by McEliece in [37]
are now considered insecure, as they only offer approximately 50-bit security [7].
We are not aware of any clear consensus on recommended parameters for MECS
for various typical security levels. There have been various theoretical articles
suggesting and analysing security of MECS parameters with respect to ISD
complexity [6], [7], [30], [40]. Other sets of parameters can be found in imple-
mentation papers such as [12], [19]. The parameter selection for MECS is more
complicated than for discrete log based systems, due to more degrees of freedom
and various implementation constraints.

Although the complexity of ISD attacks depends only on public key, which
can be considered a general linear code, parameter selection must take into

1These codes are used in code-based signature scheme CFS [16].

61

MAREK REPKA — PAVOL ZAJAC

Table 1. Recommended (code-agnostic) parameter sizes for MECS.

Sec.
Ref. (n, k, t)

PK size [kB]
Level Full PK Systematic

50 [37] (1024,524,50) 66 32

80 [6] (2048,1751,27) 438 64

80 [40] (1702,1219,45) 254 72

80 [12] (2048,1696,32) 424 73

128 [7] (3178,2384,68) 925 232

128 [12] (4096,3604,41) 1802 217

256 [7] (6944,5208,136) 4415 1104

account also the structure of the code used by the system. For MECS based
on binary irreducible Goppa codes (see Section 4), the code parameters include
underlying field size m. Typical implementation then selects t in such a way
that the code rate based on k = n − mt is the most secure choice for given
n = 2m. Alternative codes (see Section 5) might impose additional parameters
for the system (i.e., the characteristic of the underlying field,. . .), or constraints
(e.g., for cyclic codes the generator matrix can only have a specific size).

In Table 1 we summarize selected parameter recommendations for typical
cryptosystem security levels (80, 128, and 256 bits). For each parameter selec-
tion we compute the size of the full public key as k · n, and of the public key
in systematic form as k · (n − k). Systematic public key can only be used with
a proper CCA2 conversion of MECS, see Section 3. The parameters are typ-
ical for classical MECS based on irreducible binary Goppa codes. We do not
include specific parameter selections and public key sizes for alternative codes,
as the research in that area is very active with many new attacks invalidating
prior security claims (see Section 5).

3. CCA2-secure versions of McEliece cryptosystem

The classical McEliece cryptosystem is not cryptographically secure (in a the-
oretical sense), even if we choose correct parameters. There exist various attacks
that exploit the specifics of the encryption algorithm, rather than the under-
lying decoding problem. To prevent these attacks, MECS must be used with
a proper CCA2 conversion (a more general form of padding). In ideal case,
a proper CCA2-conversion transforms the original message (plaintext) into a ran-
dom string of bits (cleartext), which is then encrypted with the classical MECS.

62

OVERVIEW OF THE MCELIECE CRYPTOSYSTEM AND ITS SECURITY

Once the recipient decodes the whole cleartext, he can decrypt the original mes-
sage, as well as verify the integrity of the ciphertext. If a proper CCA2 conversion
is used, the public key matrix can be stored in a systematic form.

3.1. Attacks on classical MECS without CCA2-conversion

Using the partially known plaintext attack [14], the attacker can reduce the
code dimension, and thus the complexity of the ISD. Let us suppose that the
attacker knows l bits of a message. Without the loss of generality, the message
can be written as m = (m1, . . . ,ml,ml+1, . . . ,mk), where the first part is known
by the attacker. The encryption can be written as

c = (m1, . . . ,ml,ml+1, . . . ,mk) ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

g1
...
gl

gl+1

...
gk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ e

= (m1, . . . ,ml) ·

⎛
⎜⎝

g1
...
gl

⎞
⎟⎠+ (ml+1, . . . ,mk) ·

⎛
⎜⎝

gl+1

...
gk

⎞
⎟⎠+ e = c1 + c2 + e.

The attacker can compute c1, and obtain c′ = c2 + e = c + c1. Then the at-
tacker needs to decode c′ (instead of c), but now c′ can be decoded in a code
with smaller dimension k − l.

MECS is also vulnerable to resend attack, and the attack with related mes-
sages [10]. If the attacker knows the difference between two plaintexts Δm =
m1 +m2, he can easily compute

c1 + c2 = m1G
′ + e1 +m2G

′ + e2 = ΔmG′ + e1 + e2.

From this equation he can compute Δe = e1+e2. The knowledge of Δe is usually
enough to mount a very fast ISD attack on both messages.

Reaction attack [29] is a weaker version of the adaptive chosen ciphertext
attack. Attacker sends an intercepted ciphertext with an added error e′ (usually
a single bit), and observes the reaction of the recipient. The resulting ciphertext
can be written as c′ = mG′ + e + e′. If the recipient indicates an error in the
decryption, then wH(e+ e′) > t, and the attacker tries a different e′. Otherwise
wH(e + e′) ≤ t, and if the attacker knows that wH(e) = t, he can immediately
discern an error position indicated by e′. The attack continues until all error
positions are known, or until a fast ISD attack is feasible.

63

MAREK REPKA — PAVOL ZAJAC

Figure 2. An illustration of the Kobara-Imai CCA-2 secure conversion γ
of MECS.

Classical MECS does not provide non-malleability [66], as the adversary can
modify a ciphertext c without knowing the original plaintext m. Suppose that
the desired change of plaintext is Δm. The adversary sends c′ = ΔmG′ + c,
which is decrypted to m+Δm by the recipient of the message.

3.2. CCA2-conversions for McEliece cryptosystem

In general, it is easy for the adversary to distinguish between encryptions
of two messagesm1,m2.The adversary computes e1=m1G

′+c, and e2=m2G
′+c,

and outputs m1 if wH(e1) ≤ t, and m2 if wH(e2) ≤ t. N o j i m a et al. [42]
showed that a randomized McEliece, where message is padded by a random
string, is IND-CPA secure if the LPN (learning parity with noise) problem is
hard. However, in practice, the random padding must have a sufficient length,
as the attacker needs to decrypt only the random padding part (a partially
known plaintext attack) to test whether c is the encryption of the message m.

To prevent more advanced attacks, various practical CCA2-secure versions
of McEliece cryptosystem were proposed [33],[44]. There are also theoretical pro-
posals for CCA2-secure code-based cryptosystem in a standard model [18], [47].

K o b a r a and I m a i [33] point out two generic schemes that can be used
with MECS to provide a CCA2-secure cryptosystem: P o i n t c h e v a l’ s generic
scheme [49], and F u j i s a k i- O k am o t o scheme [25]. Unfortunately, these ge-
neric conversions introduce relatively high data redundancy (at least n bits).
K o b a r a and I m a i [33] thus propose 2 versions of MECS-specific conversions,
that require only additional (n − k + s) bits (where s is relative to the desired
security level). Moreover, their third conversion utilizes also the entropy in the
error vector, to further reduce the data overhead.

64

OVERVIEW OF THE MCELIECE CRYPTOSYSTEM AND ITS SECURITY

K o b a r a’ s and I m a i’ s third and the most efficient conversion is depicted
in Figure 2. In the Figure:

• Rand is a random session key (with size given by the required security
level for symmetric encryption).

• PRNG is a cryptographically secure pseudorandom generator (can be
a symmetric encryption algorithm in practice).

• Const is a public constant (with size given by the required security level
for authentication).

• HASH is a cryptographically secure hash function.

• CONV is a conversion function that (reversibly) computes an error vec-
tor e (size n string with exactly t ones) from a given bitstring.

• MECS is a standard MECS routine (with e as an additional input).

To decrypt the message, the legitimate recipient reconstructs y3 and y4 from y6
using a classical MECS decryption routine (and the inverse function to CONV).
Then he can reconstruct the session key and decrypt the message (using symmet-
ric cryptography). It is possible to check the integrity of ciphertext by verifying
the decryption of the public constant Const. Data overhead is increased by the
size of Rand, and Const, respectively, but it is also decreased by the size of y4,
which is �log2

(
n
t

)�.
The cleartext of the CCA-2 secured version of MECS that is to be encrypted

by the public key should be essentially a random string. In that case, a public
key matrix can be stored in a systematic form2 [6]. More precisely, O v e r b e c k
and S e n d r i e r in [45] state that if the plaintext m is uniformly distributed,
both versions (systematic and non-systematic generator matrix, respectively) are
equally secure. Unfortunately, for some of the schemes that are proposed to be
CCA2 secure, a public key stored in a systematic form can lead to weakened
security for a specific choice of parameters [70]. E.g., in [56], a CCA2 conversion
(a slightly different version of Pointcheval’s scheme) is used in the following form:

(1) Plaintext for original MECS is m̃ = r1||hash(m||r2), where r1 has random
(k − l) bits (and the output of hash function can be considered undistin-
guishable from random l-bit string).

(2) Ciphertext is (c1, c2, c3) = (m̃G′ + e, hash(r1) +m,hash(e) + r).

If G′ is in a systematic form, and m distinguishable from a random string,
the attacker can extract r1 part. This bit-string is “corrupted” with some of the
errors from e (approximately t′= t(k− l)/n errors), so the attacker knows some
r′1= r1+ e1. Now the attacker can try to locate t′ errors in (k− l) positions, and
verify their location by checking whether c2 + hash(r′1+ e1) is distinguishable

2If a systematic key matrix is used with a classical MECS, a low entropy plaintext can be
reconstructed from the corresponding part of the ciphertext.

65

MAREK REPKA — PAVOL ZAJAC

from random string. If the parameters (including l) are not chosen correctly, this
attack can be more efficient than trying to decode whole m̃. A similar remark
holds for the (proposed) CCA2-secure scheme presented in [44], and used in [59].
The technical details of the attack are presented in the Appendix A (and also
in electronic archive [70]).

This type of attack does not apply to the original CCA2-secure schemes pro-
posed by K o b a r a and I m a i [33], where the attacker needs to decrypt the
whole MECS plaintext (and/or error vector) to learn anything, not just some
part of it. If a MECS based scheme proposes to use a public key with a sys-
tematic matrix, it might be prudent to evaluate its security separately from
a non-systematic case.

4. McEliece cryptosystem based on irreducible
Goppa codes

The original M c E l i e c e proposal [37] is based on binary irreducible G o p p a
codes [28], which can be efficiently decoded by the P a t t e r s o n algorithm [46]
(among others). In this section we provide an overview of the basic building
blocks of the MECS implementation (including Patterson algorithm), without
delving into the deeper mathematical details.

Let K = GF (2m) be a finite field. Let g ∈ K[x] be an irreducible polynomial
of degree t. Let L = {γ1, γ2, . . . , γn} ⊂ K.

The binary Goppa code C with Goppa polynomial g and support L is defined
as a set of binary vectors c ∈ GF (2)n (indexed by elements of L), for which∑

γ∈L

cγ
x− γ

≡ 0 mod g(x). (1)

Code C has dimension k ≥ n−mt, code distance at least 2t+ 1. An efficient
algorithm to decode at most t errors was given by P a t t e r s o n in [46].

Let c ∈ C be a codeword, and let r = c+ e be a received word having at most
t errors (wH(e) ≤ t). Let us define syndrome (polynomial) S as

S(x) ≡
∑
γ∈L

rγ
x− γ

≡
∑
γ∈L

cγ
x− γ

+
∑
γ∈L

eγ
x− γ

≡
∑
γ∈L

eγ
x− γ

mod g(x). (2)

Furthermore, let us define an error locator polynomial σ as

σ(x) =
∏

γ∈L,eγ �=0

(x− γ).

For irreducible binary Goppa codes, we can compute σ(x) from S(x). The al-
gorithm can be summarized in the following steps:

66

OVERVIEW OF THE MCELIECE CRYPTOSYSTEM AND ITS SECURITY

1: Determine the syndrome polynomial S(x)
2: if S(x) = x then return σ(x)← x

3: Compute τ(x)←√
S(x) + x mod g(x)

4: Find a, b ∈ K[x], such that a(x) = b(x)τ(x) mod g(x), and deg a ≤ �t/2�
5: return σ(x)← a2(x) + xb2(x)

The errors are found as roots of the error locator polynomial, i.e., eγ = 1
if and only if σ(γ) = 0.

4.1. Implementation options

To implement MECS, it is necessary to at least provide a key generation,
encryption and decryption algorithms, with optional CCA2 conversions (and
paddings) and bit-string to constant-weight vector encoding/decoding routine.

The key generation routine provides a pair of public and secret key for a given
set of parameters (e.g., code parameters (n, k, t)), along with additional precom-
puted values that can speed up the decryption routine.

When using classical binary irreducible Goppa codes, additional parameter m
controls the size of the underlying finite fieldK = GF (2m), as well as the relation
between (n, k, t). Typical implementation choice is that the support set L is the
whole finite field K. With this choice n = 2m, and k = n−mt, respectively. The
support set L can be public [20], but B e r n s t e i n et al. in [8], [9] argue that
the support set should be kept secret as an additional security measure against
support splitting attacks [51].

The public key consists of the k × n public matrix Ĝ. In some instances
(if a correct CCA2-conversion is used), a public key can be converted to a sys-

tematic form, i.e., Ĝ = (Ik||R), where Ik is a k× k identity matrix. In this case,
the public key size is reduced to k × (n − k) bits. If the size of the public key
is too large to store in the encryption device, it can be retransmitted for each
encryption [63]. However, this solution has a significant negative impact on the
transmission rate and the speed of the encryption.

The private key must contain enough information for the decryption rou-
tine. In a classical general MECS, matrices S, P must be stored, along with
the parameters of the decoding algorithm. In typical implementations based on
Goppa codes, the parity check matrix and the Goppa polynomial are stored.
It is essential to keep the Goppa polynomial secret, and chosen from a large set
of polynomials. If the set of the possible Goppa polynomials is not large enough
(e.g., if they are chosen only from GF (2)[x]), the support splitting attack [51]
can be used to identify g, and to reconstruct the whole private key. Precomputed
tables for fast arithmetic in GF (2m), and precomputed matrix for fast square
root computation in GF

(
2m)/(g(x)

)
can also be stored as a part of the secret

key.

67

MAREK REPKA — PAVOL ZAJAC

The total information required for a private key storage is comparable to
a public key size. However, in practice, it can be prohibitively expensive to pro-
vide enough secure memory for the private key and precomputed parameters.
The effect of the secret matrix P is just permuting the support of the Goppa
code. Thus, it is possible to store a secret key as a pair (g, L), where g is a secret
Goppa polynomial, and L is a secret support (in a secret order), and compute
the syndrome from equation (2) [63]. To further reduce the secret key, the secret
parameters can be stored in a form of a seed for an appropriate fast pseudo-
random generator and computed on the fly (similar to [19]). However, all these
reductions in secret-key memory storage have an adverse effect on the speed
of the decryption process. Thus, a suitable balance between the speed of the
decryption and the cost of the decryption device must be found.

Encryption routine is a relatively straightforward matrix multiplication mĜ.
The public matrix Ĝ can be stored either in a row orientation, or in a column
orientation. The row orientation can lead to a more efficient matrix multipli-
cation, as each bit mi just denote whether row ĝi is added to an accumulator.
Thus, the addition of rows corresponding to mi = 0 can be skipped. This can,
however, lead to some forms of side-channel attacks (if the algorithm is without
any further protection).

The decryption process is more complicated, and provides a large variety
of implementation options. Unfortunately, the complexity of the algorithm leads
also to a variety of potential side-channel attacks (see the overview in Section 7).
Typically, the extended Euclidean algorithm is used to compute inversions
mod g(x), as well as polynomials a, b. Square root computation is a linear op-
eration in K/

(
g(x)

)
, and can be implemented as a matrix multiplication (with

precomputed matrix). Typically, the most time consuming part of the decryption
is to identify the errors using error locator polynomial σ. A standard procedure
evaluates σ in each element of the support, but there are various alternative root
finding procedures [11], [62].

4.2. List decoding

B e r n s t e i n in [5] introduced a list-decoding algorithm for irreducible binary
Goppa codes. This algorithm is an extension of Patterson’s algorithm that allows
the receiver to efficiently decode approximately n

√
n(n− 2t− 2) errors (more

than t in a typical setting). On the other hand, the list decoding algorithm
can return more than one codeword within the specified distance (uniqueness is
guaranteed only up to distance t). If MECS is implemented with a proper CCA2
conversion, the recipient can use integrity check to discard incorrect codewords.
Thus, when using MECS with the list decoding algorithm, more than t errors can
be introduced during the encryption to increase the complexity of the decoding
attacks.

68

OVERVIEW OF THE MCELIECE CRYPTOSYSTEM AND ITS SECURITY

Recently, G l i g o r o s k i et al. proposed an alternative MECS based on list
general decoding principles [27]. Instead of decoding any words within a fixed
Hamming distance of the codeword, errors are restricted to specific error sets,
and efficient list decoding algorithm is used for the underlying secret code. An in-
teresting property of the proposed system is the straightforward algorithm for
digital signatures.

5. Alternative codes for McEliece cryptosystem

MECS is a very efficient cryptosystem with a fast encryption and decryption
routine, but its public key is prohibitively large for many applications. There
have been many proposed solutions to decrease the key size by adopting al-
ternative codes with specific symmetries, or other properties that allow shorter
public keys. However, many of the proposals were quickly broken, and the re-
search area is still very active with many open questions. Thus, in this section we
provide just a short overview of the topic, but do not go into details. We focus
mainly on code alternatives that remain unbroken (as far as we know).

Goppa codes are a subfamily of Alternant codes, which are a subfield subcodes
of Generalised Reed-Solomon (GRS) codes. The use of GRS codes was proposed
by N i e d e r r e i t e r [41] in his code-based cryptosystem. Niederreiter cryptosys-
tem uses public parity-check matrix instead of generator matrix, and a message
is encoded as an error vector, while a ciphertext is a syndrome. S i d e l n i k o v
and S h e s t a k o v in [57] have shown that hidden structure of GRS codes can be
reconstructed in polynomial time O(n4). This result applies to McEliece cryp-
tosystem based on GRS codes as well. However, Niederreiter cryptosystem based
on irreducible Goppa codes should have an equivalent security to McEliece cryp-
tosystem with the same parameters.

There has been a large number of proposals that use compact representation
via subclasses of Alternant or Goppa codes with non-trivial automorphisms.
The automorphisms are used to build an efficient representation of the public
key. However, such reductions are susceptible to algebraic key recovery attacks
by using code folding techniques [22]. For a classical McEliece cryptosystem
based on irreducible binary Goppa codes, the key recovery attacks are (believed
to be) always more difficult than ISD attacks on ciphertext. However, for com-
pact codes, the key recovery complexity is based on the parameters of the folded
(compact) code, instead of the full code. Thus, the key recovery attack on some
compact code variants of MECS can be much more efficient than ISD attack [23].

Non-binary variants of Goppa codes have been proposed by B e r n s t e i n
et al. in [8], [9]. Instead of using irreducible Goppa polynomial over F2m , Goppa
code is defined over Fq by polynomials in the form fgq−1 ([9] version), where f, g

69

MAREK REPKA — PAVOL ZAJAC

are coprime monic squarefree polynomials from some Fqr . Goppa code defined
in this way has dimension at least nm

(
s + (q1)t

)
and can efficiently decode

�(s+ qt)/2� errors (using a specific decoder for Alternant codes). A larger base
field allows to use a shorter public key for the same security level (with respect
to generalized ISD attacks) [48]. We note that a care must be taken in choosing
large enough extension degree r to avoid structural attacks [17].

Many attacks on the various proposals of MECS based on compact codes are
possible due to some algebraic properties of the underlying code. M o n i c o et al.
in [39] proposed to use Low Density Parity Check (LDPC) code [26] in McEliece
cryptosystem. LDPC codes use parity check matrix with low row and column
weight, without any specific algebraic structure. However, it is not sufficient
to mask the hidden LDPC code by permutation matrix like in the original
MECS, because the attacker can find low-weight codewords in the dual of the
public code C′, and reconstruct the low-weight parity check matrix that decodes
ciphertexts.

B a l d i et al. in [2] proposed an improved variant of the LDPC-based MECS.
The efficiency of the system is improved by using quasi-cyclic LDPC code. This
code is given by a secret parity check matrix in the block form

H = (H1H2 . . .Hn0
) ,

where Hi are p × p circulant matrices with row/column weight dv (and Hn0

should be non-singular). Instead of a permutation matrix P , a sparse n × n
non-singular matrix Q is used. If the LDPC code that is used in the system
can correct t errors, and the weight of Q is at most m, the error vector added
to the encrypted message can have weight at most �t/m�. On the other hand,
scrambling matrix S must be dense to prevent attacks by O tm a n i et al. [43].
To preserve the quasi-cyclic structure, both S, Q have a quasicyclic structure,
i.e., they consist of p × p circulant block matrices. The final public key is thus
given as

G′ = S−1 ·G ·Q−1,

where

G =

⎛
⎜⎜⎜⎝Ip(n0−1)

(H−
n0
1H1)

T

(H−
n0
1H2)

T

...
(H−

n0
1Hn0−1)

T

⎞
⎟⎟⎟⎠ .

The final secret code has dimensions n = pn0, k = p(n0 − 1), and at most
t′ = �t/m� errors can be introduced during the encryption. For 80-bit secu-
rity, B a l d i et al. [2] recommend parameters n0 = 3, dv = 13, and p = 8192.
The proposed QC-LDPC code should be able to correct up to more than 470
errors per frame, which leads to parameters t′ = 40 and m = 11. The public key

70

OVERVIEW OF THE MCELIECE CRYPTOSYSTEM AND ITS SECURITY

for the system can be stored in approximately 6kB (10-times less than a classical
MECS based on irreducible Goppa codes with 80-bit security).

Even more efficient version of compact MECS (that is still considered secure)
was proposed by M i s o c z k i et al. in [38]. This version is based on the so-called
MDPC codes. MDPC codes are similar to LDPC codes, but their parity check
matrix has “moderate” row weight w which scales with O(

√
n logn). Such codes

can correct significantly less errors then LDPC codes, but there is no need to use
a special matrix Q to mask the low-weight codewords in the dual code. A quasi-
-cyclic variant (QC-MDPC) is again based on a secret parity check matrix in
the block form

H = (H1H2 · · ·Hn0
) ,

where each Hi is a p × p circulant matrix. The public key is just a systematic
form of generator matrix

G′ =

⎛
⎜⎜⎜⎝Ip(n0−1)

(H−1
n0

H1)
T

(H−1
n0

H2)
T

...
(H−1

n0
Hn0−1)

T

⎞
⎟⎟⎟⎠ .

Code dimensions are thus n = n0p and k = (n0−1)p. A system with a systematic
public matrix requires a proper CCA2 conversion, but it means that the public
key is just k-bit long. Higher n0 means longer public key, but better code rate
as k/n = 1− 1/n0.

Various decoding algorithms for the LDPC/MDPC codes are available [26].
A fast bit-flipping algorithm was proposed to be used with MDPC codes in MECS
implementations [38]. We remark that bit-flipping algorithm is stochastic and
can lead to a decoding failure. A special treatment is required for these states,
either by reducing the number of errors introduced during the encryption, by us-
ing more sophisticated (but slower) decoding algorithms, or using reencryption
(CCA2 conversion prevents resend attacks). To keep the complexity of message
recovery and key recovery attacks of the same order, w should be chosen to be
of the form

w =
(
1 + o(1)

)√n lnn ln(1− k/n)

ln(k/n)
.

The bit-flipping algorithm then can correct a number of errors of the order

t =
(
1 + o(1)

) n

4w
ln
(
w · (1− k/n)

)
.

The recommended parameters for 80-bit security with code rate 1/2 are n0 = 2,
p = 4800, w = 90, t = 84 [38], with only 600B public key (only 4.7-times longer
than RSA-1024 public key).

71

MAREK REPKA — PAVOL ZAJAC

6. MECS on embedded and hardware platform

These is a large number of experimental implementations of MECS on em-
bedded, hardware, and on software platforms. A good overview of the existing
implementations can be found in [50]. In this section, we summarize selected
contributions to demonstrate the progress in the implementation area, and chal-
lenges faced by the implementers.

The use of MECS on embedded devices is restricted due to the (relatively)
large key structures. The first notable microprocessor based MECS implementa-
tion was published by E i s e n b a r t h et al. [19]. They implemented an instance
of MECS with n = 2048, t = 27 (for estimated 80-bit security) on an 8-bit AVR
microprocessor, and on a Xilinx Spartan-3AN FPGA, respectively. An external
memory is required for public key structures, while private key structures (par-
ity check matrix) were stored in 192 kB Flash memory. Scrambling matrix S is
precomputed on the fly from the seed value.

FPGA implementations of MECS typically need to overcome the problem
with large memory requirements. MECS processor architecture for a Virtex-5
FPGA was published by S h o u f a n et al. in [56]. The published architecture
involves key generator, encryptor, as well as decryptor. Their implementation
of MECS with n=2048, t=50 spent 84% of slices and 50% of BRAMs (2700 Kb).

S t r e n z k e in [60] describes an implementation of MECS on a smart card
with an Infineon SLE 76 chip. Strenzke tested two instances of MECS based
on irreducible Goppa codes with systematic public key: m = 10, n = 1024,
t = 40 errors (62-bit security, 93kB key structures), andm = 11, n = 2048, t = 50
(102-bit security, 257 kB key structures). Again, a non-volatile memory is used
for storing key structures. Due to the complicated write access to non-volatile
memory, key generation routines must be implemented outside the card.

A strong potential for low cost implementations lie in adopting some of the
compact versions of MECS. H e y s e et al. in [32] report an 8-bit AVR implemen-
tation of QC-MDPC McEliece variant along with a Xilinx Virtex-6 XC6VLX240T

FPGA implementation. Their compact implementation uses only 4,800 and 9,600
bits for the public and secret key at 80 bits of equivalent symmetric security.
The results are on par, or even better than other currently used public key
systems with similar security (ECC-160, RSA-1024, see Tables 2 and 3).

7. Side-channel attacks on MECS implementations

In practical applications, the security of cryptographic primitives can be com-
promised by a side-channel information leaked by a concrete implementation
of cryptographic algorithms. Typical MECS implementation based on irreducible

72

OVERVIEW OF THE MCELIECE CRYPTOSYSTEM AND ITS SECURITY

Table 2. MECS on embedded platform.

PKC
Device

Computation time
Ref.

n, t, Security bits Encrypt, Decrypt
Goppa MECS n =
1024, t = 40, 62-bit
sec.

Infineon SLE76CF5120P
controller, 16-bit CPU @
33 MHz

970ms, 690ms [60]

Goppa MECS n =
2048, t = 50, 102-
bit sec.

Infineon SLE76CF5120P
controller, 16-bit CPU @
33 MHz

1390ms 1060ms [60]

Goppa MECS n =
2048, t = 27, 80-bit
sec.

AVR ATxMega192, 8-bit
CPU @ 32MHz

450ms, 618ms [19]

QC-MDPC MECS
n = 9600, t = 84,
80-bit sec.

AVR ATxMega256A3, 8-
bit CPU @ 32MHz

800ms, 2700ms [32]

Cryptosystem Device Computation time Ref.
ECC-P160 (SECG) ATMega128@8MHz 203ms (at 32MHz) [19]
RSA-1024 ATMega128@8MHz 20748ms (at 32MHz) [19]

Table 3. MECS on embedded platform.

PKC
Device

Computation time
Ref.

n, t, Security bits Encrypt, Decrypt
Goppa MECS n =
2048, t = 27, 80-bit
sec.

Spartan-3AN 1400
FPGA, Enc@150MHz,
Dec@85Mhz

1.07ms, 10.82ms [19]

Goppa MECS n =
2048, t = 50, 102-
bit sec.

Xilinx Virtex-5, 163MHz 0.5ms, 1.4ms [56]

QC-MDPC MECS
n = 9600, t = 84,
80-bit sec.

Xilinx Virtex-6
Enc@351.3MHz,
Dec@190.6MHz

0.14ms, 0.86ms [32]

Cryptosystem Device Computation time Ref.
ECC-P160 (SECG) Spartan-3 1000-4 5.1ms (at 32MHz) [19]
RSA-1024 Spartan-3E 1500-5 51ms [19]

binary Goppa codes uses Patterson’s algebraic decoding algorithm [46] in the
form presented in Figure 3 (see Section 4 for more details). This algorithm is
relatively complex and there are many possibilities for various side channels in its
implementation.

73

MAREK REPKA — PAVOL ZAJAC

Require: u ∈ F
n
2 (a private code word with t errors), Γ(Λ, g).

Ensure: Error vector e such that v = u + e, where v ∈ Γ(Λ, g) is the code
word.

1: Compute syndrome S(Z). � Eq. (2).
2: T (Z) ≡ S−1(Z) + Z mod g(Z). � Inversion.

3: τ(Z) ≡√
T (Z) mod g(Z). � Square root.

4: Find α, β such that β(Z)τ(Z) ≡ α(Z) mod g(Z). � EEA.
5: σ(Z) = α2(Z) + Zβ2(Z). � Squaring.
6: Find roots of σ(Z). � Evaluation over Λ.
7: Determine indexes of the roots in the support Λ.
8: Set 1 in the determined indexes in error vector e.
9: return e.

Figure 3. Patterson’s algebraic decoding algorithm.

The timing attack against the Patterson’s algebraic decoding algorithm, first
studied in S t r e n z k e et al. in 2008 [65], uses the dependence of the degree
of error-locator polynomial σ on Hamming weight of the error vector wH(e).
The total time of locating error position then depends on the degree of σ (in some
implementations). Usually, a legitimate sender of the message uses error vectors
with exactly t errors. The analysed attack is basically a reaction attack [29],
when attacker introduces one or more additional errors, trying to remove some
of the originally introduced errors. If the attacker guesses the error location cor-
rectly, the decryption time is slightly lower than in the case when error location
was incorrect. In comparison with the original reaction attack, the timing side-
channel can work even when CCA2 conversion is used. This attack was later
extended in [54] to cover also timing information from different steps of Pat-
terson’s algorithm that depend on Hamming weight of error vector. A v a n z i
et al. [1] extend these attacks further by using statistical profile of the decryp-
tion computation time regarding all the possible correctable error vectors of the
desired Hamming weight. Thanks to this profiling phase of attack, the success
of the attack has been improved significantly.

Figure 4 illustrates the dependence of computational time on Hamming weight
of error vector for various steps of (schoolbook implementation of) Patterson’s
algorithm.

While the timing-enabled reaction attack can only recover a single message,
other attacks are focused on key recovery. S t r e n z k e et al. in [65] discuss
a possibility to reveal coefficients of the irreducible Goppa polynomial g(Z)
assuming that the code support Λ is known by analyzing the power consumption
caused by the evaluation of the irreducible Goppa polynomial during the parity
check matrix construction. We remark, that while originally this occurs only

74

OVERVIEW OF THE MCELIECE CRYPTOSYSTEM AND ITS SECURITY

(a) Top level view. (b) View without Step 3.

Figure 4. Computation time of Patterson’s algebraic decoding algorithm

with respect to wH (e). Measurements are averages based on 10 random
instances of Goppa MECS with reduced parameters (m = 8, n = 256,
t = 10).

in the key generation phase, some of the implementations can recompute parity
check matrix for each decryption to save storage space.

Timing attacks enhanced with a specific post-processing can be used to re-
construct secret permutation [61] from the information provided by EEA step.
Certain coefficients of the error-locator polynomial can be reconstructed from
timing channel provided by the syndrome inversion, from which a further post-
processing can reveal some information about the secret code support [64].

The first practical evaluation of a simple power analysis attack revealing the
secret permutation P , and the scrambling matrix S, during the decryption pro-
cess can be found in [31]. They conducted and evaluated attacks against MECS
decryption algorithm implemented on the embedded device [19]. The SPA at-
tacks are based on the ability to distinguish power traces for different instruc-
tions and Hamming weights of operands. The power trace obtained during the
syndrome computation can leak information about permutation matrix P if the
message is permuted before the syndrome computation, and the syndrome com-
putation is different for ciphertext bits 0 and 1. Furthermore, if the attacker can
accurately estimate the Hamming weight of the operands, he can reconstruct
partial information about the parity check matrix from the syndrome compu-
tation, and about Goppa polynomial from the syndrome inversion (while the
Goppa polynomial is loaded into the microprocessor). In some cases, this partial
information can be used to reconstruct the whole private key after some post
processing.

75

MAREK REPKA — PAVOL ZAJAC

Classical MECS based on binary irreducible Goppa codes does not seem to be
vulnerable to DPA attacks [31], as there is not enough information from syn-
dromes to distinguish key-bit hypotheses. This however does not hold in gen-
eral. Recently, a DPA attack on QC-MDPC implementation [69] was presented
by C h e n et al. [15]. The attacker needs to reconstruct two vectors that define
the secret sparse parity check matrix. These vectors are repeatedly rotated in
a specific register during the syndrome computation. The attacker exploits the
difference between power traces when a specific key bit is 0 or 1, leading to
a possible full key recovery (this is implementation specific).

REFERENCES

[1] AVANZI, R.—HOERDER, S.—PAGE, D.—TUNSTALL, M.: Side-channel attacks on the

McEliece and Niederreiter public-key cryptosystems, J. Cryptogr. Eng. 1 (2011), 271–281.
[2] BALDI, M.—BODRATO, M.—CHIARALUCE, F.: A new analysis of the McEliece cryp-

tosystem based on QC-LDPC codes, in: Proc. of the 6th Internat. Conf.—SCN ’08, Amalfi,
Italy, 2008 (R. Ostrovsky et al., eds.), Lecture Notes in Comput. Sci., Vol. 5229, Springer,
Berlin, 2008, pp. 246–262.

[3] BECKER, A.—JOUX, A.—MAY, A.—MEURER, A.: Decoding random binary lin-

ear codes in 2n/20: How 1 + 1 = 0 improves information set decoding, in: Advances

in Cryptology—EUROCRYPT ’12, 31st Annual Internat. Conf. on the Theory and Appl.
of Cryptographic Techniques, Cambridge, UK, 2012 (D. Pointcheval et al., eds.), Lecture
Notes in Comput. Sci., Vol. 7237, Springer, Berlin, 2012, pp. 520–536.

[4] BERLEKAMP, E.—MCELIECE, R.—VAN TILBORG, H.: On the inherent intractability
of certain coding problems, IEEE Trans. Inform. Theory 24 (1978), 384–386.

[5] BERNSTEIN, D. J.: List decoding for binary Goppa codes, in: Coding and Cryptology,

3rd Internat. Workshop—IWCC ’11, Qingdao, China, 2011 (Y. M. Chee et al., eds.),
Lecture Notes in Comput. Sci., Vol. 6639, Springer, Berlin, 2011, 62–80.

[6] BERNSTEIN, D. J.—LANGE, T.—PETERS, C.: Attacking and defending the McEliece
cryptosystem, in: Post-Quantum Cryptography, 2nd Internat. Workshop—PQCrypto ’08
(J. Buchmann et al., eds.), Cincinnati, OH, USA, 2008, Lecture Notes in Comput. Sci.,
Vol. 5299, Springer, Berlin, 2008, pp. 31–46.

[7] BERNSTEIN, D. J.—LANGE, T.—PETERS, C.: Smaller decoding exponents: Ball-col-
lision decoding, in: Advances in Cryptology—CRYPTO ’11, 31st Annual Cryptology
Conf., Santa Barbara, CA, USA, 2011, (P. Rogaway, ed.), Lecture Notes in Comput.
Sci., Vol. 6841, Springer, Berlin, 2011, pp. 743–760.

[8] BERNSTEIN, D. J.—LANGE, T.—PETERS, C.: Wild McEliece, in: Selected Areas in

Cryptography, 17th Internat. Workshop—SAC ’10, Waterloo, Ontario, Canada, 2010
(A. Biryukov et al., eds.), Lecture Notes in Comput. Sci., Vol. 6544, Springer, Berlin,
2011, pp. 143–158.

[9] BERNSTEIN, D. J.—LANGE, T.—PETERS, C.: Wild McEliece incognito, in: Post-
-Quantum Cryptography, 4th Internat. Workshop—PQCrypto ’11, Taipei, Taiwan, 2011
(B.-Y. Yang, ed.), Lecture Notes in Comput. Sci., Vol. 7071, Springer, Berlin, 2011,

244–254.

76

OVERVIEW OF THE MCELIECE CRYPTOSYSTEM AND ITS SECURITY

[10] BERSON, T. A.: Failure of the McEliece public-key cryptosystem under message-resend

and related-message attack, in: Advances in Cryptology–CRYPTO ’97, 17th Annual In-
ternat. Cryptology Conf. Santa Barbara, CA, USA, 1997 (B. S. Kaliski, jr. ed.), Lecture
Notes in Comput. Sci., Vol. 1294, Springer, Berlin, 1997, pp. 213–220.

[11] BISWAS, B.—HERBERT, V.: Efficient root finding of polynomials over fields of charac-
teristic 2, in: Western European Workshop on Research in Cryptology—WEWORC ’09,
Graz, Austria, 2009 (C. Rechberger, ed.), Lecture Notes in Comput. Sci., Vol. 6429,

Springer-Verlag, Berlin, 2009.
[12] BISWAS, B.—SENDRIER, N.: McEliece cryptosystem implementation: theory and prac-

tice, in: Post-Quantum Cryptography, 2nd Internat. Workshop—PQCrypto ’08, Cincin-
nati, OH, USA, 2008 (J. Buchmann et al., eds.), Lecture Notes in Comput. Sci., Vol. 5299,
Springer, Berlin, 2008, pp. 47–62.

[13] CANTEAUT, A.—CHABAUD, F.: A new algorithm for finding minimum-weight words

in a linear code: application to McElieces cryptosystem and to narrow-sense BCH codes
of length 511. IEEE Trans. Inform. Theory 44 (1998), 367–378.

[14] CANTEAUT, A.—SENDRIER, N.: Cryptanalysis of the original McEliece cryptosystem,
in: Advances in Cryptology—ASIACRYPT ’98, Internat. Conf. on the Theory and Ap-
plication of Cryptology and Inform. Security, Beijing, China, 1998 (K. Ohta et al., eds.),

Lecture Notes in Comput. Sci., Vol. 1514, Springer, Berlin, 1998, pp. 187–199.
[15] CHEN, C.—EISENBARTH, T.—VON MAURICH, I.—STEINWANDT, R.: Differential

power analysis of a McEliece cryptosystem. Cryptology ePrint Archive, Report 2014/534,
2014, http://eprint.iacr.org/.

[16] COURTOIS, N. T.—FINIASZ, M.—SENDRIER, N.: How to achieve a mceliece-based
digital signature scheme, in: Advances in Cryptology—ASIACRYPT ’01, 7th Internat.

Conf. on the Theory and Appl. of Cryptology and Inform. Security, Gold Coast, Australia,
2001 (C. Boyd, ed.), Lecture Notes in Comput. Sci., Vol. 2248, Springer, Berlin, 2001,
pp. 157–174.

[17] COUVREUR, A.—OTMANI, A.—TILLICH, J.-P.: Polynomial time attack on wild
McEliece over quadratic extensions, Cryptology ePrint Archive, Report 2014/112, 2014,
http://eprint.iacr.org/.

[18] DÖTTLING, N.—DOWSLEY, R.—MÜLLER-QUADE, J.—NASCIMENTO, A. C. A.:
A CCA2 secure variant of the McEliece cryptosystem. IEEE Trans. Inform. Theory 58
(2012), 6672–6680.

[19] EISENBARTH, T.—GÜNEYSU, T.—HEYSE, S.—PAAR, C.: MicroEliece : McEliece for
embedded devices, in: Cryptographic Hardware and Embedded Systems—CHES ’09, 11th
Internat. Workshop Lausanne, Switzerland, 2009 (Ch. Clavier et al., eds.), Lecture Notes
in Comput. Sci., Vol. 5747, Springer, Berlin, 2009, pp. 49–64.

[20] ENGELBERT, D.—OVERBECK, R.—SCHMIDT, A.: A summary of McEliece-type
cryptosystems and their security, J. Math. Cryptol. 1 (2007), 151–199.

[21] FAUGÈRE, J.-C.—GAUTHIER-UMAÑA,V.—OTMANI, A.—PERRET, L.—TILLICH,
J.-P.: A distinguisher for high-rate McEliece cryptosystems, IEEE Trans. Inform. Theory
59 (2013), 6830–6844.

[22] FAUGÈRE, J.-C. —OTMANI, A.—PERRET, L.—DE PORTZAMPARC, L.—TILLICH:
Folding alternant and Goppa codes with non-trivial automorphism groups, arXiv preprint
arXiv:1405.5101, 2014.

[23] FAUGÈRE, J.-C.—OTMANI, A.—PERRET, L.—DE PORTZAMPARC, F.—TILLICH,
J.-P.: Structural cryptanalysis of McEliece schemes with compact keys, Cryptology ePrint

Archive, Report 2014/210, 2014, http://eprint.iacr.org/.

77

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

MAREK REPKA — PAVOL ZAJAC

[24] FAUGÈRE, J.-C.—OTMANI, A.—PERRET, L.—TILLICH, J.-P.: Algebraic cryptana-

lysis of McEliece variants with compact keys, in: Advances in Cryptology—EURO-
CRYPT ’10, 29th Annual Internat. Conf. on the Theory and Appl. of Cryptographic Tech-
niques, French Riviera, 2010 (H. Gilbert, ed.), Lecture Notes in Comput. Sci., Vol. 6110,
Springer, Berlin, 2010, pp. 279–298.

[25] FUJISAKI, E.—OKAMOTO, T.: Secure integration of asymmetric and symmetric en-
cryption schemes, in: Advances in Cryptology—CRYPTO ’99, 19th Annual Internat.

Cryptology Conf. Santa Barbara, CA, USA, 1999 (M. Wiener, ed.), Lecture Notes in
Comput. Sci., Vol. 1666, Springer, Berlin, 1999, pp. 537–554.

[26] GALLAGER, R. G.: Low-density parity-check codes, IRE Trans. Inform. Theory 8 (1962),
21–28.

[27] GLIGOROSKI, D.—SAMARDJISKA, S.—JACOBSEN, H.—BEZZATEEV, S.: McEliece
in the world of Escher, Cryptology ePrint Archive, Report 2014/360, 2014,

http://eprint.iacr.org/.
[28] GOPPA, V. D.: A new class of linear error correcting codes, Probl. Pered. Inform. 6

(1970), 24–30.
[29] HALL, C.—GOLDBERG, I.—SCHNEIER, B.: Reaction attacks against several public-

key cryptosystem, in: Information and Commun. Security, 2nd Internat. Conf.—ICICS ’99,

Sydney, Australia, 1999 (V. Varadharajan et al., eds.), Lecture Notes in Comput. Sci.,
Vol. 1726, Springer, Berlin, 1999, pp. 2–12.

[30] HAMDAOUI, Y.—SENDRIER, N.: A non asymptotic analysis of information set decod-
ing, IACR Cryptology ePrint Archive, 2013:162, 2013.

[31] HEYSE, S.—MORADI, A.—PAAR, C.: Practical power analysis attacks on software im-
plementations of McEliece, in: Post-Quantum Cryptography, 3rd Internat. Workshop–

–PQCrypto ’10, Darmstadt, Germany, 2010 (N. Sendrier, ed.), Lecture Notes in Comput.
Sci., Vol. 6061, Springer, Berlin, 2010, pp. 108–125.

[32] HEYSE, S.—VONMAURICH, I.—GÜNEYSU, T.: Smaller keys for code-based cryptogra-
phy: QC-MDPC McEliece implementations on embedded devices, in: Cryptographic Hard-
ware and Embedded Systems—CHES ’13 15th Internat. Workshop, Santa Barbara, CA,
USA, 2013, (G. Bertoni and J.-S. Coron, eds.), Lecture Notes in Comput. Sci., Vol. 8086,

Springer, Berlin, 2013, pp. 273–292.
[33] KOBARA, K.—IMAI, H.: Semantically secure McEliece public-key cryptosystems–

–conversions for McEliece PKC, in: Public Key Cryptography, 4th Internat. Workshop
on Practice and Theory in Public Key Cryptosystems—PKC ’01, Cheju Island, Korea,
2001 (K. Kim, ed.), Lecture Notes in Comput. Sci., Vol. 1992, Springer, Berlin, 2001,
pp. 19–35.

[34] LEE, P. J.—BRICKELL, E. F.: An observation on the security of McElieces public-key
cryptosystem, in: Advances in cryptology—EUROCRYPT 88, Workshop on the Theory
and Appl. of Cryptogr. Techniques, Davos, Switzerland, 1988 (D. Barstow et al., eds.),
Lecture Notes in Comput. Sci., Vol. 330, Springer, Berlin, 1988, pp. 275–280.

[35] LEON, J.: A probabilistic algorithm for computing minimum weights of large error-cor-

recting codes, IEEE Trans. Inform. Theory 34 (1988), 1354–1359.
[36] MAY, A.—MEURER, A.—THOMAE, E.: Decoding random linear codes in O(20.054n),

in: Advances in Cryptology—ASIACRYPT ’11, 7th Internat. Conf. on the Theory and
Appl. of Cryptology and Inform. Security, Seoul, South Korea, 2011 (D. H. Lee and
X. Wang, eds.), Lecture Notes in Computer Science, Vol. 7073, Springer, Berlin, 2011,
pp. 107–124.

[37] MCELIECE, R. J.: A public-key cryptosystem based on algebraic coding theory, DSN
Progress Report 42 (1978), 114–116.

78

http://eprint.iacr.org/

OVERVIEW OF THE MCELIECE CRYPTOSYSTEM AND ITS SECURITY

[38] MISOCZKI, R.—TILLICH, J.-P.—SENDRIER, N.—BARRETO, P. S. L. M.: MDPC-

McEliece: New McEliece variants from moderate density parity-check codes, in: IEEE
Internat. Symposium on Information Theory—ISIT ’13, Istanbul, Turkey, 2013, IEEE,
2013, pp. 2069–2073.

[39] MONICO, C.—ROSENTHAL, J.—SHOKROLLAHI, A.: Using low density parity check
codes in the McEliece cryptosystem, in: IEEE Internat. Symposium on Information The-
ory, Sorrento, Italy, 2000, IEEE, 2000, p. 215.

[40] NIEBUHR, R.—MEZIANI, M.—BULYGIN, S.—BUCHMANN, J.: Selecting parameters
for secure McEliece-based cryptosystems, Int. J. Inf. Sec. 11 (2012), 137–147.

[41] NIEDERREITER, H.: Knapsack-type cryptosystems and algebraic coding theory, Probl.
Control Inf. Theory 15 (1986), 159–166.

[42] NOJIMA, R.—IMAI, H.—KOBARA, K.—MOROZOV, K.: Semantic security for the
McEliece cryptosystem without random oracles, Des. Codes Cryptography 49 (2008),

289–305.
[43] OTMANI, A.—TILLICH, J.-P.—DALLOT, L.: Cryptanalysis of two McEliece cryptosys-

tems based on quasi-cyclic codes, Math. Comput. Sci. 3 (2010), 129–140.
[44] OVERBECK, R.: An analysis of side channels in the McEliece PKC (2008),

www.cosic.esat.kuleuven.be/nato_arw/slides_participants/Overbeck\

slides_nato08.pdf.
[45] OVERBECK, R.—SENDRIER, N.: Code-based cryptography, in: Post-Quantum Cryptog-

raphy, 1st Internat. Workshop—PQCrypto ’06, Leuven, The Netherland, 2006 (D. Bern-
stein et al., eds.), Springer, Berlin, 2009, pp. 95–145.

[46] PATTERSON, N. J.: The algebraic decoding of Goppa codes, IEEE Trans. Inform. The-
ory 21 (1975), 203–207.

[47] PERSICHETTI, E.: On a CCA2-secure variant of McEliece in the standard model, IACR
Cryptology ePrint Archive, 2012:268, 2012.

[48] PETERS, C.: Information-set decoding for linear codes over Fq, in: Post-Quantum
Cryptography, 3rd Internat. Workshop—PQCrypto ’10, Darmstadt, Germany, 2010
(N. Sendrier, ed.), Lecture Notes in Comput. Sci., Vol. 6061, Springer, Berlin, 2010,
pp. 81–94.

[49] POINTCHEVAL, D.: Chosen-ciphertext security for any one-way cryptosystem, in: Pub-
lic Key Cryptography—PKC ’00, 3rd Internat. Workshop on Practice and Theory in Pub-
lic Key Cryptosystems, Melbourne, Victoria, Australia, 2000 (H. Imai et al., eds.), Lecture
Notes in Comput. Sci., Vol. 1751, Springer, Berlin, 2000, pp. 129–146.

[50] REPKA, M.—CAYREL, P.-L.: Cryptography based on error correcting codes: a survey,
in: Multidisciplinary Perspectives in Cryptology and Information Security, IGI Global,

2014, pp. 133–156.
[51] SENDRIER, N.: Finding the permutation between equivalent linear codes: the support

splitting algorithm, Information Theory, IEEE Transactions 46 (2000), 1193–1203.
[52] SENDRIER, N. (ED.): Post-Quantum Cryptography, 3rd International Workshop–

–PQCrypto ’10, Darmstadt, Germany, 2010 Lecture Notes in Comput. Sci., Vol. 6061,

Springer, Berlin, 2010.
[53] SENDRIER, N.: Decoding one out of many, in: Post-Quantum Cryptography, 4th Inter-

nat. Workshop—PQCrypto ’11, Taipei, Taiwan, 2011 (B.-Y. Yang, ed.), Lecture Notes
in Comput. Sci., Vol. 7071, Springer, Berlin, 2011, pp. 51–67.

[54] SHOUFAN, A.—STRENZKE, F.—MOLTER, H. G.—STÖTTINGER, M.: A timing at-
tack against Patterson algorithm in the McEliece PKC, in: Proc. of the 12th Internat.

Conf. on Information Security and Cryptology—ICISC ’09, Seoul, Korea, 2009 (D. Lee
and S. Hong, eds.), Lecture Notes in Comput. Sci., Vol. 5984, Springer, Berlin, 2010,
pp. 161–175.

79

www.cosic.esat.kuleuven.be/nato_arw/slides_participants/Overbeck\
slides_nato08.pdf

MAREK REPKA — PAVOL ZAJAC

[55] SHOUFAN, A.—WINK, T.—MOLTER, H. G.—HUSS, S. A.—KOHNERT, E.: A novel

cryptoprocessor architecture for the McEliece public-key cryptosystem, IEEE Trans. Com-
put. 59 (2010), 1533–1546.

[56] SHOUFAN, A.—WINK, T.—MOLTER, H. G.—HUSS, S. A.—STRENZKE, F.: A novel
processor architecture for McEliece cryptosystem and FPGA platforms, in: Application-
Specific Systems, Architectures and Processors—ASAP ’09, 20th IEEE Internat. Conf.,
Boston, MA, IEEE, 2009, pp. 98–105.

[57] SIDELNIKOV, V. M.—SHESTAKOV, S. O.: On insecurity of cryptosystems based on
generalized reed-solomon codes, Discrete Math. Appl. 2 (1992), 439–444.

[58] STERN, J.: A method for finding codewords of small weight, in: Coding Theory and
Applications, Proc. 3rd Int. Colloq., Toulon/France, 1988, Lecture Notes in Comput.
Sci., Vol. 388, Springer, Berlin, 1989, pp. 106–113.

[59] STRENZKE, F.: A side-channel secure and flexible platform-independent implementation

of the McEliece PKC–flea version 0.1. 1–, http://www.cryptosource.de/flea_doc.pdf.
[60] STRENZKE, F.: A smart card implementation of the McEliece PKC, in: Proc. of the 4th

IFIP WG 11.2 Internat. Conf. on Information Security Theory and Practices: Security
and Privacy of Pervasive Systems and Smart Devices—WISTP ’10, Passau, Germany,
2010 (P. Samarati et al., eds.), Lecture Notes in Comput. Sci., Vol. 6033, Springer, Berlin,

2010, pp. 47–59.
[61] STRENZKE, F.: A timing attack against the secret permutation in the McEliece PKC,

in: Post-Quantum Cryptography, 3rd Internat. Workshop—PQCrypto ’10, Darmstadt,
Germany, 2010 (N. Sendrier, ed.), Lecture Notes in Comput. Sci., Vol. 6061, Springer,
Berlin, 2010, pp. 95–107.

[62] STRENZKE, F.: Fast and secure root-finding for code-based cryptosystems, IACR Cryp-

tology ePrint Archive, 2011:672, 2011.
[63] STRENZKE, F.: Solutions for the storage problem of McEliece public and private keys

on memory-constrained platforms, in: Inform. Security, 15th Internat. Conf.—ISC ’12,
Passau, Germany, 2012 (D. Gollmann and F. C. Freiling, eds.), Lecture Notes in Comput.
Sci., Vol. 7483, Springer, Berlin, 2012, pp. 120–135.

[64] STRENZKE, F.: Timing attacks against the syndrome inversion in code-based cryptosys-

tems, in: Post-Quantum Cryptography, 5th Internat. Workshop—PQCrypto ’13, Limoges,
France, 2013 (P. Gaborit, ed.), Lecture Notes in Comput. Sci., Vol. 7932, Springer, Berlin,
2013, pp. 217–230.

[65] STRENZKE, F.—TEWS, E.—MOLTER, H. G.—OVERBECK, R.—SHOUFAN, A.:
Side channels in the McEliece PKC, in: Post-Quantum Cryptography, 2nd Internat.
Workshop—PQCrypto ’08, Cincinnati, OH, USA, 2008 (J. Buchmann et al., eds.), Lecture

Notes in Comput. Sci., Vol. 5299, Springer, Berlin, 2008, pp. 216-229.
[66] SUN, H.-M.: Further cryptanalysis of the McEliece public-key cryptosystem, IEEE Com-

mun. Letters 4 (2000), 18–19.
[67] UMANA, V. G. —LEANDER, G.: Practical key recovery attacks on two McEliece vari-

ants, Cryptology ePrint Archive, Report 2009/509, 2009, http://eprint.iacr.org/.

[68] VAN TILBURG, J.: On the McEliece public-key cryptosystem, in: Advances in Cryp-
tology—CRYPTO 88, Santa Barbara, CA, USA, 1988 (S. Goldwasser, ed.), Lecture Notes
in Comput. Sci., Vol. 403, Springer, Berlin, 1988, pp. 119–131.

[69] VON MAURICH, I.—GÜNEYSU, T.: Lightweight code-based cryptography: QC-MDPC
McEliece encryption on reconfigurable devices, in: Proc. of the Conf. on Design, Au-
tomation and Test in Europe—DATE ’14, Vol. 38, European Design and Automation

Association, Leuven, Belgium, 2014, pp. 1–6.
[70] ZAJAC, P.: A note on CCA2-protected McEliece cryptosystem with a systematic public

key. Cryptology ePrint Archive, Report 2014/651, 2014. http://eprint.iacr.org/.

80

http://www.cryptosource.de/flea_doc.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/

OVERVIEW OF THE MCELIECE CRYPTOSYSTEM AND ITS SECURITY

Appendix A. Attack on CCA2-protected McEliece
cryptosystem with a systematic public key

We summarize here the technical details about the attack on CCA2-protected
McEliece cryptosystem with a systematic public key from [70] as a supplemen-
tary material for Section 3.1.

We use McEliece cryptosystem from Section 2, with code parameters (n, k, t).
We will suppose that public key matrix G′ is in a systematic form. I.e., G′ =
(Ik||R), where Ik is a k×k identity matrix, and R is a public k× (n−k) matrix.

We will start with CCA2 conversion used in [55], [59]. Let us assume that
message m is an l bit string. The full encryption algorithm with conversion
works as follows:

1: ke ← a random k − l bit string
2: ki ← a random l bit string
3: e← a random n-bit string with wH(e) = t
4: m̃← ke||hash(m||ki)
5: c← m̃ ·G′

6: y ← c⊕ e||m⊕ hash(ke)||ki ⊕ hash(e)

Here, ke is a session key used to mask the original message m, and ki is a key
used for protecting the integrity of the ciphertext. We note that the attacker
only requires the key ke, which can be used to decrypt the original message from
the second part of the ciphertext.

If the McEliece public key is in a systematic form G′ = (Ik||R), we can rewrite
the CCA2-protected ciphertext y as follows:

y1|| y2|| y3|| y4|| y5 =

ke ⊕ e1|| hash(m||ki)⊕ e2|| m̃ ·R⊕ e3|| m⊕ hash(ke)|| ki ⊕ hash(e)

The legitimate recipient will use his private key to

(1) decode the y1||y2||y3 part, and extract m̃, and e = e1||e2||e3, respectively,
(2) get ke from m̃, and compute m from y4 using ke,

(3) decrypt integrity key ki from y5 using e,

(4) check the integrity using hash(m||ki).
The attacker can compromise the message, if he can decode the y1||y2||y3

without the knowledge of the private key of the MECS. We model the security
level by the complexity of the generalized information set decoding, which is sup-
posed to be the most efficient attack the attacker has for a properly implemented
system.

However, the attacker is really only interested in a (k − l)-bit string

y1 = ke ⊕ e1.

81

MAREK REPKA — PAVOL ZAJAC

What the attacker can do is to guess e1, and then compute m=y4⊕hash(y1⊕e1).
Thus, instead of decoding whole m̃ with t errors in n bits, the attacker only needs
to locate errors in the first (k− l)-bits to compute ke. If the guess was incorrect,
he gets a random string (property of the hash function). Otherwise he gets
the original message, which we can assume is distinguishable from a random
string. Even in the case when the message is just a random session key for some
subsequent symmetric encryption, attacker can try to decrypt the symmetric
message (which then can be distinguished from a random string).

We did not study the complexity of partial decoding problem, but even a sim-
ple brute-force attack can be more efficient than the prescribed security level, if
the parameters are chosen incorrectly. Suppose that security level is s. Choose
the encryption key of size k− l = s (if it is shorter, the system is trivially broken
just by guessing hash(ke)). The attacker needs only to enumerate s-bit vectors
within a certain Hamming distance (approximately s ·
t/n�) of y1 to uncover
ke, instead of enumerating all 2s vectors. Thus the attack is more efficient than
the prescribed security level s.

If the attacker needs to recover k − l bits of the cleartext, the complexity
of the attack is approximately

�t/n�·(k−l)∑
i=0

(
k − l

i

)
≤ 2H(t/n)(k−l).

The security of the system thus depends not only on the system parameters
(n, k, t), but also on the choice of l. Usually, the selection of l is based on the
typical length of the hash function output. However, larger values of l decrease
a relative overhead of the analysed encryption scheme, thus it may seem more
attractive for implementers to use longer messages and larger hash functions.
Thus, we get a very counter-intuitive property of the system: Using a hash
function with longer output decreases the overall security instead of increasing it.

Overbeck in [44] introduces a specific conversion for small messages (k−3l≥ l),
where

m̃← ke||m⊕ hash(ke)||ki ⊕ hash(e)||hash(m||ki)
In this case, the ciphertext is just encoded m̃ with the added errors.

Similarly to the previous attack, if the public key is in a systematic form,
attacker tries to correct errors in the ke part of size k−3l, and verify them using
m⊕ hash(ke) part. As the size of ke is much smaller than in the previous case,
it is easier to recover ke. However, the verification part is now also corrupted
by approximately l ·
t/n� errors. The success rate thus depends on the entropy
of the message m. If m is a random session key used for further encryption,
the attacker must correct errors in both parts. In this case the complexity of the
attack is based on decoding errors in k− 2l bits (out of n). However, the imple-
menters of the system should always suppose that the worst case scenario, when

82

OVERVIEW OF THE MCELIECE CRYPTOSYSTEM AND ITS SECURITY

Table 4. Complexity of the attack for selected parameter choices of the
MECS. Max. l denotes the maximum value of parameter l, for which the

estimated attack cost is approximately equal to the expected security level.
Choices of l larger than this maximum lead to insecure systems.

Sec. Level (n, k, t) H(t/n) l = 2s l = 6s Max. l

50 [37] (1024,524,50) 0.281 119 63 346

80 [6] (2048,1751,27) 0.101 161 129 961

80 [40] (1702,1219,45) 0.176 187 130 765

128 [7] (3178,2384,68) 0.149 318 241 1526

256 [7] (6944,5208,136) 0.139 653 511 3368

the message m can be easily distinguished even in the presence of errors, and
the attacker only needs to correctly recover k − 3l bits of ke.

We summarize the complexity of the attack for some of the recommended
parameter choices from [6], [7], [37], [40] in Table 4, along with the limits to pa-
rameter l based on security level. Maximum size l should be divided by 3 if one
uses a conversion from [44] for small messages. If l is chosen to be double the se-
curity level (preventing collision attacks in hash function), the system can resist
the attack in all analysed cases. The complexity estimate is based just on the
estimated complexity of a simple brute force attack, and may be improved in the
future by more advanced attacks.

The conversions presented by K o b a r a and I m a i [33] require the attacker
to recover the whole cleartext m̃ to retrieve original message m. The complexity
of the brute-force attack in this case is approximately 2H(t/n)k. However, if the
attacker can repair all errors in k bits of encoded code-word, he has already
succeeded in the information-set decoding attack, even if the public key matrix
is not in a systematic form. Thus the attack is not relevant in this case, as it
should be already thwarted by a proper choice of the parameters of the MECS.

Received October 18, 2013 Institute of Computer Science

and Mathematics
Faculty of Electrical Engineering
and Information Technology
Slovak University of Technology
in Bratislava
Ilkovičova 3

SK–812-19 Bratislava
SLOVAKIA

E-mail : pavol.zajac@stuba.sk
marek.repka@stuba.sk

83

