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Abstract

In evolutionary computation approaches such as genetic programming (GP), preventing
premature convergence to local minima is known to improve performance. As with other
evolutionary computation methods, it can be difficult to construct an effective search bias
in GP that avoids local minima. In particular, it is difficult to determine which features are
the most suitable for the search bias, because GP solutions are expressed in terms of trees
and have multiple features. A common approach intended to local minima is known as
the Island Model. This model generates multiple populations to encourage a global search
and enhance genetic diversity. To improve the Island Model in the framework of GP, we
propose a novel technique using a migration strategy based on textit f requent trees and a
local search, where the frequent trees refer to subtrees that appear multiple times among
the individuals in the island. The proposed method evaluates each island by measuring its
activation level in terms of the fitness value and how many types of frequent trees have
been created. Several individuals are then migrated from an island with a high activa-
tion level to an island with a low activation level, and vice versa. The proposed method
also combines strong partial solutions given by a local search. Using six kinds of bench-
mark problems widely adopted in the literature, we demonstrate that the incorporation of
frequent tree information into a migration strategy and local search effectively improves
performance. The proposed method is shown to significantly outperform both a typical
Island Model GP and the aged layered population structure method.
Keywords: genetic programming, island model, frequent tree-based migration strategy

1 Introduction

Genetic Programming (GP) is the best-known
evolutionary computation (EC) algorithm whose
solutions are expressed in terms of a tree. GP is
one of the most widely used and practical opti-
mization methods and offers high performance and
availability[1]. GP has been used to produce solu-
tions that are competitive with those developed by
humans, Hence, numerous researchers have applied

GP to a wide variety of fields, including electrical
circuits, robotics, and image filters [2, 3]. However,
it remains important to explore new application ar-
eas and to develop new algorithms with better per-
formance and availability.

Similar to other EC techniques, the most impor-
tant GP issue concerns the development of a ver-
satile algorithm to prevent premature convergence.
For example, genetic algorithms (GAs) often use
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spatial information about the solutions to avoid lo-
cal minima. More specifically, a solution that is rep-
resented by a bit string can be projected in a contin-
uous design variable space using methods such as
binary coding or gray coding, thus allowing vari-
ous bias-control methods using spatial information
to be employed. These methods can control the
search bias according to the landscape of an objec-
tive function, resulting in an effective search. In
GP, solutions are expressed in terms of trees, so
special information cannot be used to control the
search bias, because there is no way to map individ-
ual solutions within a design variable space directly.
Therefore, to prevent a population from converging
prematurely in GP, parallel models such as an Island
Model GP must be applied [4, 5].

In the Island Model [6], individuals are divided
into some islands, and selected individuals migrate
from one island to the next. In this way, the Island
Model GP retains diversity in an attempt to avoid
local minima. Studies on the Island Model GP
have resulted in further performance improvement
via the following three approaches: changing the
“number of islands”, changing the “migration rate”,
and exploring more efficient migration strategies.
Andre and Koza [7], Punch [8], and others [9, 10]
have investigated the effects of changing the num-
ber of islands and the migration rate using several
benchmark problems; however, it is difficult to con-
struct a universal theory that can determine optimal
parameter values for a given problem. Various other
migration strategies have been proposed. For exam-
ple, Hu et al. [11] developed the hierarchical fair
competition (HFC) Island Model GP. HFC orga-
nizes islands based on the f itness level to ensure fair
competitions between individuals. Variants such as
adaptive HFC [12] and continuous HFC [13] have
also been reported. Hornby introduced the age fea-
ture and proposed the age-layered population struc-
ture (ALPS)[14, 15, 16]. ALPS evaluates how long
each’s genetic material has been evolving. Korns
conducted that ALPS was a state-of-the-art island
model in GP[17], and found that it performed well
in symbolic regression problems.

According to the Building Block Hypothesis in

evolutionary computation [18, 19, 20], partial solu-
tions known as building blocks can be assembled
into the entire solutions, and a greater number of
partial solutions can improve performance. In par-
ticular, partial solutions are considered to play an
important role in improving GP performance, be-
cause each solution is a tree. As we mentioned
above, various Island Model GPs have been pro-
posed. However, these models only use fitness to
organize islands and define the similarity between
individuals or islands By developing an effective
migration strategy based on the tree information of
the individuals, we attempt to enhance the Island
Model GP. In this paper1, we propose an effective
migration strategy that enhances the combination of
partial solutions based on the tree information.

In general, it is difficult to specify partial so-
lutions during the search for an optimal solution.
Thus, we assume that frequent trees on an island
of a later generation are closely related to partial
solutions in the framework of the Island Model GP.
Here, the frequent trees on an island refer to the sub-
trees that frequently appear among the individuals
on the island. In this paper, we propose to evaluate
the activation level of an island on the basis of both
fitness and frequent trees, and present a novel mi-
gration strategy based on the activation level and a
local search. To the best of our knowledge, this is
the first attempt to use the tree information of indi-
viduals in the Island Model GP.

The remainder of this paper is organized as fol-
lows. In Section 2, we formulate the optimization
problem discussed in this paper, and give a detailed
explanation of the Island Model GP with a random
topology as a typical method of the Island Model
GP. In Section 3, we describe the proposed mi-
gration strategy with a local search method in de-
tail. Section 4 is dedicated to examining the effec-
tiveness of the proposed method via experiments
using three types of benchmark problems widely
adopted in the literature. Here, we introduce two
methods as extreme cases of the proposed method
to separately analyze the effects of fitness and fre-
quent trees in the proposed evaluation measure. We
present the results of a comparison between the pro-

1In our conference paper [21], we proposed a basic framework for such a migration strategy. This paper extends our prelimi-
nary paper [21] by improving how to measure the activation level of an Island and newly incorporating a local search mechanism.
Moreover, we extensively discuss related work and compared the proposed method with the state-of-the-art method, ALPS, for six
kinds of benchmark problems.
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posed method, the two methods, ALPS, and con-
ventional Island Model GP with a random topology
in solution quality. Moreover, we extensively com-
pare the proposed method and the Island Model GP
with a random topology in terms of their compu-
tational time and solution quality. Finally, we give
our conclusions from this study and some ideas for
future work in Section 5.

2 Problem Definition and Island
Model Genetic Programming

In the framework of genetic programming (GP),
we consider the problem of maximizing a function
f (x), where the input variable x is represented as
a labelled ordered tree. Given the total population
size N and a crossover-mutation-selection strategy,
a common approach to improving genetic diversity
in GP is to apply the Island Model methods. In
the Island Model GP, the total population is parti-
tioned into M subpopulations, or islands, and the
islands execute GP searches to maximize f (x) in
parallel, although they exchange information by mi-
gration. There are several migration topologies for
the Island Model, but the random topology exhibits
the best performance. Thus, we focus on a typical
method of the Island Model with a random topol-
ogy in the framework of GP, and refer to this as the
original Island Model GP. In this paper, we attempt
to improve the original Island Model GP for maxi-
mizing f (x).

We begin by recalling the original Island Model
GP. Let Lm (m = 1, . . . ,M) denote the set of individ-
uals in the mth island, where |Lm| = N/M, and note
that the total population L is obtained by

L =
M∪

m=1

Lm,

and consists of labelled ordered trees. We denote
by L the set of the islands, i.e.,

L = {Lm; m = 1, . . . ,M} .

Let Bm(n) and Wm(n) denote the sets of the best
n individuals and the worst n individuals on an is-
land Lm, respectively, with respect to their objective
function values, where n is a positive integer.

The migration strategy of the original Island
Model GP is as follows:

O0: Set k← 1.

O1: Set Lk←L.

O2: If k ≤ M/2, then perform Steps O3 to O9, oth-
erwise, stop.

O3: Choose two islands Lm′ and Lm′′ at random
from Lk.

O4: Choose the best n individuals Bm′ (n) and the
worst n individuals Wm′ (n) from Lm′ .

O5: Choose the best n individuals Bm′′ (n) and the
worst n individuals Wm′′ (n) from Lm′′ .

O6: Replace Wm′ (n) with a copy of Bm′′ (n), and re-
place Wm′′ (n) with a copy of Bm′ (n).

O7: Set Lk+1←Lk \
{
Lm′ ,Lm′′

}
.

O8: Set k← k+1.

O9: Return to Step O2.

The migration occurs at migration time α j ( j =
1, . . . , J), where α is a positive integer called the
migration interval, and J is an integer with 1 ≤ J ≤
I/α. Note that α and n are integer-valued parame-
ters. We used n = N/(2M) in our experiments.

3 Proposed Method

We now consider enhancing the Island Model
GP for the problem of maximizing the objective
function f (x).

According to the Building Block Hypothesis in
EC, it is considered that partial solutions can be as-
sembled into the entire solution. In GP, solutions
are expressed by trees, so partial solutions deeply
affect performance improvement. Therefore, we
hypothesize that there exist good pieces (sub-trees)
as solution seeds, and that each partial solution is
constructed by combining some of these pieces in
an optimal manner. We also assume that if these
pieces are badly incorporated in an individual, they
cannot build even partial solutions. In the Island
Model GP, each island executes its GP search to
maximize f (x), resulting in individuals with high
objective function values. Viewed in this light, we
consider that the f requent trees, namely, those sub-
trees that frequently appear among the individuals
on an island, to be candidates for the good pieces
(i.e., solution pieces) in later generations. Thus,
we suppose that islands with higher activation lev-
els not only generate individuals (labelled ordered
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trees) having higher objective function values, but
also newly create more types of frequent trees. We
now explain the details of the proposed method.

A labeled ordered tree is a 6-tuple t = (Vt, Et,
LAt, ℓat, v0

t , ≼t), where Vt is the set of nodes, Et

is the set of links, LAt is the set of labels, ℓat :
Vt → LAt is the labeling function, v0

t is the root,
and ≼t is the sibling relation. For labeled ordered
trees t and x, t is called a sub-tree of x when there
exists a one-to-one map φ : Vt → Vx such that φ
preserves the parent relation (i.e., (v1,v2) ∈ Et iff
(φ(v1),φ(v2)) ∈ Ex), the sibling relation (i.e., v1 ≼t v2
iff φ(v1) ≼x φ(v2)), and the labels (i.e., ℓat(v) =
ℓax(φ(v))). For an island Lm, we define a labeled
ordered tree t to be its f requent tree when the num-
ber of individuals that include t as their sub-trees
is more than λ |Lm|, where λ is a positive number.2

Let Tm denote the set of all frequent trees on island
Lm. Note that one of the main aims of migration is
to find solution pieces (sub-trees of relatively small
sizes), and obtaining Tm is computationally expen-
sive. Thus, we restrict our attention to a subset T βm
of Tm such that the sizes of sub-trees belonging to
T βm are relatively small and |T βm| = β|Lm|, where β is
a positive number.3 We construct T βm by extracting
all frequent trees of size k in Lm in order of increas-
ing size k until satisfying |T βm| = β|Lm|, where k is
an integer with k ≥ 2. Here, T βm is referred to as
the set of frequent trees of rate β in Lm. In our mi-
gration strategy, we particularly focus on how many
types of frequent trees increase on an island. Tak-
ing account of our main aim of migration and the
computational cost, we deal with T βm instead of Tm.
Furthermore, we also use FREQT [22, 23] to reduce
the computational cost. FREQT efficiently enumer-
ates the frequent trees from a set of labelled ordered
trees by using the “rightmost expansion” and “prun-
ing by node-skip and edge-skip” techniques. The
algorithm is very efficient and scales almost linearly
with the total size of the maximal frequent trees.
Therefore, we attempt to efficiently measure the ac-
tivation level of an island by exploiting a suitable
approximation and FREQT.

Let x̂m ∈ Lm be the individual that gives the

maximum value of f (x) in Lm, i.e.,

f (x̂m) ≥ f (x) (∀x ∈ Lm) .

We define g (Lm) to be the number of new types of
frequent trees of (α j)th generation in Lm, i.e.,

g (Lm) =
����T βm(α j)

����−
����T βm(α j)∩T βm (α( j−1))

���� ,
where T βm(α j) is the set of frequent tree of rate β of
(α j)th generation. In order to evaluate each island
Lm by a combination of f -evaluation f (x̂m) and g-
evaluation g (Lm), we introduce a measure F (Lm)
such that

0 ≤ F (Lm) ≤ 1, (1)

f (x̂m) < f (x̂m′)⇒ F (Lm) < F (Lm′) , (2)

g (Lm) < g (Lm′)⇒ F (Lm) < F (Lm′) . (3)

Although there are many ways to design the
evaluation measure F (Lm) of island Lm,4 we em-
ploy a ranking based method in where a good is-
land Lm′ and a bad island Lm′′ are deterministically
chosen from L, that is,

Lm′ = argmax
Lm∈L

F (Lm) ,

Lm′′ = argmax
Lm∈L

(1−F (Lm)) .

We constructed the evaluation measure F (Lm) in
the following way. Let v f

m denote the normalized
maximum fitness value of an island Lm in L with
respect to f -evaluation. Namely,

v f
m =

f (x̂m)∑
m f (x̂m)

. (4)

Let vg
m denote the normalized g(Lm) of an island Lm,

that is,

vg
m =

g(Lm)∑
m g(Lm)

. (5)

Then, we define F (Lm) by

F (Lm) = ϕv f
m+ (1−ϕ)vg

m,
5 (6)

where ϕ is a parameter to control the balance be-
tween v f

m and vg
m. It is easily proved that the condi-

tions (1), (2) and (3) are satisfied. Note that F (Lm)
defined by Equation (6) equally treats the effects of
f (x̂m) and g (Lm).

Using a Divide & Conquer technique under
evaluation measure F(Lm), the proposed method

2λ is a parameter. We used λ = 0.5 in our experiments.
3β is a parameter. We used β = 0.5 in our experiments.
4Our future work includes extensively examining various types of evaluation measure F (Lm).
5In our experiments, we used ϕ = 0.5.
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migrates n individuals from an island with a high
activation level (called a good island) to an island
with a low activation level (called a bad island), and
vice versa, to enhance genetic diversity. The algo-
rithm of the proposed method is as follows:

P0: Generate the initial individuals.

P1: Divide these individuals into M subpopula-
tions.
/*Crossover in each subpopulation
Lm*/

P2: Set j← 1

P3: If j ≤ |Lm|, then perform Steps P3 to P13, oth-
erwise perform Step P14.

P4: Choose a mother em with probability propor-
tional to fitness from Lm

6.

P5: Choose a father e f with probability propor-
tional to fitness

P6: Crossover between em and e f and generate a
child candidate c′ℓ.
/*Mutation (local search) */

P7: Set ℓ← 1.

P8: Set c′ℓ← em.

P9: If ℓ ≤ V, then perform Step P10 to P12, other-
wise perform Step P137 .

P10: Mutate c′ℓ.

P11: Set ℓ← ℓ+1.

P12: Select the best candidate c′ℓ as a child c j.

P13: Set j← j+1.
/*Migration*/

P14: Set k← 1.

P15: Set Lk←L
P16: If k ≤ M/2, then perform Steps P17 to P22,

otherwise, stop.

P17: Choose Lm′ from Lk with probability propor-
tional to evaluation measure F(Lm),
and choose Lm′′ from Lk with proba-
bility proportional to 1 − F(Lm).8

P18: Choose a set Xm′(n) of n individuals from Lm′

at random.

P19: Choose a set Xm′′(n) of n individuals from
Lm′′ at random.

P20: Move Xm′(n)from Lm′ to Lm′′ , and move
Xm′′(n) from Lm′′ to Lm′ .

P21: Set Lk+1←Lk \ {Lm′ ,Lm′′ }.

P22: Set k← k+1.

Similar to the original Island Model GP, the mi-
gration occurs at migration time α j ( j = 1, . . . , J),
where α is an integer-valued parameter called the
migration interval, and J is an integer with 1 ≤ J ≤
I/α. In our experiments, we also used n = N/(2M).

The proposed method aims to enhance genetic
diversity more than in the original Island Model GP
to avoid premature convergence. Maintaining diver-
sity is closely related to a migration strategy in the
Island Model. In particular, we use a novel evalua-
tion measure for migration in the framework of GP,
and combine it with a simple Divide & Conquer
technique. Several studies have examined Divide
& Conquer techniques for the purpose of maintain-
ing diversity and avoiding premature convergence.
For example, Fillon et al [24] developed an “island
rank” based technique, and Luke et al [25] reported
a “diagonal layout” approach. We note that such
techniques can be easily incorporated into the pro-
posed method. Moreover, the proposed method in-
cludes a local search to enhance the exploration of
partial solutions. In the proposed method, individ-
uals on islands with higher activation levels are mi-
grated to islands with lower activation levels to in-
crease whole activation levels. It leads to increase
the genetic diversity of individuals in consequence.
However, it is known that there are trade-offs be-
tween the speed of convergence and preservation of
genetic diversity. To overcome these problems, in
this paper, we introduce a new real-valued based
metric based on frequent trees and apply a local
search to maintain a balance between global search
and local search. The migration strategy in the pro-
posed method encourages more new kinds of fre-
quent trees on each island Lm, and local search helps
to combine useful frequent trees into a solution as
candidates of partial solutions.

6We used a fitness tournament selection in our experiments
7In our experiments, we also used V = 2.
8We can design various roulette wheels for selecting both good and bad islands. Here, we state the most fundamental one.
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4 Experimental Evaluation

By conducting experiments on three benchmark
problems that are widely used in the literature, we
evaluated the effectiveness of the proposed method.

4.1 Benchmark Problems

We evaluated the effectiveness of the proposed
method on well-known benchmark problems, the
Santa Fe ant trail problem and the symbolic regres-
sion problem [26, 27, 28] for more detailed descrip-
tions). We used these problems to evaluate the pro-
posed measures v f

m,v
g
m and the local search. In par-

ticular, in symbolic regression problems, changes
in subtrees that are positioned deep inside in a tree
rarely affect the overall fitness value, and in royal
tree problems, fitness values are significantly af-
fected by small changes in a tree regardless of their
position. On the other hand, the Santa Fe ant trail
problem is moderately affected by subtree changes.

4.1.1 Santa Fe Ant Trail Problem

We examined the Santa Fe ant trail problem
composed of 144 squares with 21 turns and 89 food
units, as shown in Figure 1. Artificial ants can per-
form three operations (Move, Left and Right) to
find the food units. The fitness function f (x) counts
the number of food units found by the ant. The to-
tal number of operations was limited to 400 in our
experiments.

Figure 1. Santa Fe ant trail problem. Filled
squares denote food units.

4.1.2 Royal Tree Problem

The royal tree problem [29] is composed of
function nodes and terminal nodes. We exam-
ined the D-level royal tree problem, which con-
tains function nodes {A,B,C,D} and terminal nodes
{tx, ty, tz}, and the E-level royal tree problem, which

consists of function nodes are {A,B,C,D,E} and ter-
minal nodes are{tx, ty, tz}, respectively. These prob-
lems search for the entire perfect tree, which is com-
posed of smaller perfect trees. Figure 2 shows per-
fect trees at each level, where each perfect tree has
a score value. The fitness function f (x) is evaluated
by summing each score of a perfect tree within a
tree structure (solution), and the total score is dou-
bled when the tree is an optimal solution. It is
known that the optimal value of f (x) is 6144 in the
D-level problem, and f (x) is 144880 in the E-level
problem.
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4.1.3 Symbolic Regression Problem

We investigated the symbolic regression prob-
lem for the function space X constructed by the
labeled ordered trees of functional nodes {+, −,
×, /, sin, cos} and terminal nodes {s, 0.05, 0.10,
0.15, 0.20, . . . , 0.95, 1.00}, where s is a variable
value. Our training set was composed of 30 data
points {(s j, x∗(s j)) ∈ R2 ; j = 1, . . . , 30}, where
s j = 0.2( j−1), and x∗(s) ∈ X is the true function to
be identified. For any x(s) ∈ X, we define the fitness
f (x) as

f (x) = 1000−50
30∑
j=1

|x(s j)− x∗(s j)|,

and consider the problem of maximizing f (x).
In our experiments, we employed two functions
(Function 1 to 2) from [26] and one function (Func-
tion 3) from [30] for x∗(s),

F1 : x∗(s) = (2−0.3s) sin(2s)cos(3s)+0.11s2,

F2 : x∗(s) = scos(s) sin(s)
(
sin2(s)cos(s)−1

)
,

F3 : x∗(s) = s8+3cos(s)+ s5+ s.
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We investigated the symbolic regression prob-
lem for the function space X constructed by the
labeled ordered trees of functional nodes {+, −,
×, /, sin, cos} and terminal nodes {s, 0.05, 0.10,
0.15, 0.20, . . . , 0.95, 1.00}, where s is a variable
value. Our training set was composed of 30 data
points {(s j, x∗(s j)) ∈ R2 ; j = 1, . . . , 30}, where
s j = 0.2( j−1), and x∗(s) ∈ X is the true function to
be identified. For any x(s) ∈ X, we define the fitness
f (x) as

f (x) = 1000−50
30∑
j=1

|x(s j)− x∗(s j)|,

and consider the problem of maximizing f (x).
In our experiments, we employed two functions
(Function 1 to 2) from [26] and one function (Func-
tion 3) from [30] for x∗(s),

F1 : x∗(s) = (2−0.3s) sin(2s)cos(3s)+0.11s2,

F2 : x∗(s) = scos(s) sin(s)
(
sin2(s)cos(s)−1

)
,

F3 : x∗(s) = s8+3cos(s)+ s5+ s.
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4.2 Comparison Methods

The proposed method evaluates the activation
level of each island L(m) for migration as a combi-
nation of f -evaluation f

(
x f (m)

)
(i.e., how high the

best fitness value is) and g-evaluation g (L(m)) (i.e.,
how many types of frequent trees have been cre-
ated). To analyze the effects of f -evaluation and g-
evaluation separately, we first introduce two meth-
ods as extreme cases of the proposed method, and
compare their solution quality in Section 4.4. More-
over, to analyze the effects of the proposed method,
we also compare the performance of ALPS and the
simple Island approach (see Section 4.2.5 for more
detailed description) in terms of solution quality in
Section 4.4.

4.2.1 f -evaluation

In the same way as for the implantation of the
proposed method, a good island Lm′ and a bad is-
land Lm′′ are deterministically chosen from Lk in
Step P3. First, we investigate the f -evaluation-
based method in which the evaluation measure
F (Lm) of island Lm is defined by

F (Lm) = v f
m. (7)

This is referred to as the f -evaluation method. Note
that the conditions (1) and (2) are satisfied for the
evaluation measure F (Lm) defined by Equation (7).

4.2.2 g-evaluation

Next, we investigate the g-evaluation based
method in which the evaluation measure F (Lm) of
island Lm is defined by

F (Lm) = vg
m. (8)

This is referred to as the g-evaluation method. Note
that the conditions (1) and (3) are satisfied for the
evaluation measure F (Lm) defined by Equation (8).

4.2.3 Ranking-based evaluation

The proposed method enables adaptive migra-
tion based on the real-valued f -evaluation and, g-
evaluation given in Equation(4) and (5). As a com-
parison method, we introduce the rank-based eval-
uation in terms of the evaluation measure function
F(Lm) of the proposed method to analyze which is
more suitable, real-value based or rank based eval-
uations.

Let r f
m denote the rank of an island Lm inL with

respect to f -evaluation. Namely, when Lm is ranked
in L according to f (x̂m), Lm is the r f

mth rank in L.
Let rg

m denote the rank of an island Lm in L with
respect to g-evaluation. Namely, when Lm is ranked
in L according to g (Lm), Lm is the rg

mth rank in L.
Then, we define F (Lm) by

F (Lm) =

(
M− r f

m

)
+
(
M− rg

m

)

2(M−1)
. (9)

For example, if Lm is the top-ranked island with re-
spect to f -evaluation and the top-ranked island with
respect to g-evaluation. We refer to this method as
the ranking-based method in this paper.

4.2.4 ALPS

The proposed method of adaptively controlling
the migration between islands using frequent trees
is an enhanced version of the Island Model GP. In
our experiments, we compare the proposed method
with the ALPS method, which is a current state-
of-the-art Island Model GP for symbolic regression
problems.

The ALPS has an assembly line structure based
on the age of each individual, where the age indi-
cates that how long the individual’s genetic mate-
rial has been evolving within the population. The
age is measured by the number of times an individ-
ual has been selected as a parent. To ensure fair
competitions and restrict breeding among individu-
als, each layer has a maximum age, and individuals
can only breed in their layer or the layer one level
below. If an individual is selected to reproduce mul-
tiple times, its age only increases by 1 in one gener-
ation, and the individual moves to the highest layer
possible. In the lowest layer, individuals are re-
newed periodically at random. HFC, which uses the
same fair competition model as ALPS separates in-
dividuals into different layers based on their fitness
values and fair competitions among individuals are
achieved in terms of fitness. However, HFC tends
to push individuals toward the same local minima,
because individuals with similar fitness values often
inhabit the nearby region. Thus, ALPS introduced
the age attribute to enhance genetic diversity. We
briefly explain the ALPS. Let xn

m ∈ Lm be an indi-
vidual, and age(xn) be the age of xn, and δ be an
integer-valued parameter that indicates the interval
between generations for reconstructing the popula-
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tion according to age.

A0: Set k← 1 and Lk← ∅.
A1: If k is the generation in which the population

is to be reconstructed, then perform
Steps A2 to A15.

A2: If Lk ← ∅, then generate initial individuals
on the island Lk (Level k) and set
age(xn

k)← 1.

A3: If |Lk| < |Lm|, then generate |Lm| − |Lk| individ-
uals in the Level k island Lk and set
age(xn

k)← 1.

A4: Set j← 1.

A5: If j ≤ |Lm|, then perform Steps A4 to A9, and
otherwise perform Step A10.

A6: Select an individual xn
m according to the pro-

portion of fitness values in Lm.

A7: Set f lag(xn
m)← 1.

A8: Apply genetic operators such as crossover and
mutation.

A9: Set j← j+1.

A10: Set j← 1.

A11: If j ≤ |Lm|, then perform Steps A12 to A14,
and otherwise perform Step A15.

A12: If f lag(x j
m) is 1, then age(x j)← age(x j)+ 1,

and otherwise perform Step A13.

A13: If age(x j) > δ× k, then move x j to the Level
k + 1 island Lk+1, and otherwise per-
form Step A14.

A14: Set j← j+1.

A15: Set k← k+1.

In the Steps A1 and A2, the age of each individual
xn is initialized to 1.

4.2.5 Simple Approach

A simple and promising approach to enhanc-
ing genetic diversity for the Island Model GP is to
increase the number of islands, although this ap-
proach necessarily causes an increase in the total
population size. As a baseline method, we first in-
vestigate the original island model GP within the
same island structure as the proposed method in
Section 4.4, where the number of islands is M and
the number of individuals in each island Li(m) is

N/M. By varying the positive integer h, we inves-
tigate the original island model GP with M + h is-
lands, each of which has N/M individuals. In Sec-
tion 4.6, we compare the proposed method with this
naive method in terms of computational time and
solution quality.

4.3 Experimental Setting

For the Island Model GP and the benchmark
problems, we used the following standard parame-
ter settings [26, 27, 28]: Recombination rate is 0.9;
Tournament selection is used (size = 7, no-elitist);
Total population size is N = 2,000; Number of is-
lands is M = 10; Migration interval is α = 50; Initial
individuals are created by using “ramped half-and-
half” with maximum depth; The number of trials in
each experiment is 30.

All our experimentation were undertaken on a
single PC running Linux with six Intel Xe on X5675
3.07GHz processors, and 8 GB RAM.

4.4 Performance Evaluation

We first compared the proposed method with
the original Island Mode GP, ALPS, and 1X meth-
ods, where the 1X method indicates the simplest
GP that is a sequential GP with a normal sim-
ple crossover. The 1X method is considered as a
baseline method in this paper. Figure 3 shows the
history of the best fitness values as a function of
the number of evaluations and plots the average of
max1≤m≤M f (x̂m) over the 30 trials. In the experi-
ments, we conducted 30 trials. Here, the pink lines
indicate the results of 1X.

We first compared the 1X method with the other
methods in terms of solution quality. From Figure
3, the 1X method performs worse than the other
methods in the Santa Fe ant trail, royal tree, sym-
bolic regression problems. These problems contain
local minima that need an effective migration strat-
egy to improve performance.

Figure 3(a) shows the results of the Santa Fe
ant trail problem. We can see that it is difficult to
obtain a global optimum of 89 food units without
an effective strategy. The original Island Model GP
gives comparable performance to ALPS. Moreover,
the proposed method outperforms both the original
method and ALPS. Figures 3(b) and (c) show the
results of the royal tree problems. In the Class-D
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case, we can see that the 1X method converged to a
local minimum, and that the proposed method per-
forms similarly to the original Island Model GP and
ALPS. These results indicate that the island models
such as the Original Island Model GP and proposed
methods and ALPS can avoid local minima.

In the Class-E royal tree problem, the fitness of
the 1X method did not change once the number of
generations had exceeded 6× 105, which suggests
that the 1X method again converged to a local mini-
mum. The proposed method outperformed the orig-
inal Island Model GP and ALPS, and was the only
method to reach the global optimum. The royal
tree problems are typical benchmark problems for
evaluating the effectiveness of frequent trees, and
are therefore suitable for evaluating the proposed
method. These results verify the effectiveness of
the proposed evaluation measure that takes subtree
information into account.

Figure 3(d), (e), (f) show the results for the sym-
bolic regression problems using functions A, B, and
C, respectively. Form Figure 3(f), we can see that
the 1X method obtained lower fitness values than
the other methods, whereas the performance of the
proposed method is comparable to that of both the
original Island Model GP and ALPS. Furthermore,
Figures 3(d), and (e) suggest that the proposed ap-
proach can outperform the other methods. These
results imply that considering the number of new
types of frequent trees g (Lm) improves the solution
quality, and the proposed evaluation measure effec-
tively enhances performance. That is, incorporating
both g (Lm) and the fitness value f

(
x f

m

)
leads to bet-

ter performance.

4.5 Comparison with Naive Approaches

In Section 4.4, we demonstrated the effective-
ness of the proposed method, and showed that the
1X method converges to local minima in all prob-
lems. Next, we compared the proposed method
with M islands and the original Island Model GP
with M + h islands (h = 0,10,20) in terms of solu-
tion quality and computational time. Table 1 gives
the results of the Santa Fe Ant trail problem. Tables
2 and 3 present the results of the royal tree prob-
lem of Class-D and Class-E, respectively. Tables
4, 5, and 6 list the results of the symbolic regres-
sion problems with functions A, B, and C, respec-
tively. Tables 1 to 6 each present the solution qual-

ity max1≤m≤M f
(
x f

m

)
of the final generation and its

computation time.

From Tables 1 to 6, we can first confirm that
the original Island Model GP with h = 0 is faster
than the proposed method, and that the original Is-
land Model GP with h = 20 gives a higher-quality
solution than with h = 0, although it requires sig-
nificantly more computation time. However, the
proposed method was faster than the original Island
Model GP for h = 10 in all problems. Moreover, the
proposed method gave higher-quality solutions than
the original Island Model GP for h = 10, and the
processing time required by the proposed method
was less than five min. The proposed method did
not require significantly more computational time,
because it only extracts frequent trees of relatively
small size at the migration times. Indeed, FREQ
can incrementally extract the frequent trees of size
k in Lm in order of increasing size k. The algorithm
is very efficient and scales almost linearly with the
total size of the maximal frequent trees. As the pro-
posed method extracts frequent trees of relatively
small sizes only at migration times using FREQ, its
computational complexity does not increase signif-
icantly, unlike in the original Island Model GP. In
fact, the frequent trees extracted by the proposed
method have a size of at most three. Also, the ex-
ecutions to extract frequent trees were performed
only at migration times. These results demonstrate
the effectiveness of the proposed method.

Table 1. Results of the Santa Fe ant trail problem.

Method Fitness Time[sec.]
Proposed 85 101
Original (h = 0) 79.3 42
Original (h = 10) 84.3 117
Original (h = 20) 80.6 162

Table 2. Results of the royal tree (Class-D)
problem.

Method Fitness Time [sec.]
Proposed 6144 21
Original (h = 0) 6144 11
Original (h = 10) 6144 145
Original (h = 20) 6144 178
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Figure 3. Best fitness values achieved by the comparative algorithms.

Table 3. Results of the royal tree (Class-E)
problem.

Method Fitness Time [sec.]
Proposed 113202 100
Original (h = 0) 97577 47
Original (h = 10) 116238 160
Original (h = 20) 118141 197

Table 4. Results of the symbolic regression
problem (Function A).

Method Fitness Time [sec.]
Proposed 739 163
Original (h = 0) 704 117
Original (h = 10) 661 629
Original (h = 20) 683 1032

Table 5. Results of the symbolic regression
problem (Function B).

Method Fitness Time [sec.]
Proposed 815 169
Original (h = 0) 786 87
Original (h = 10) 814 424
Original (h = 20) 859 568

Table 6. Results of the symbolic regression
problem (Function C).

Method Fitness Time [sec.]
Proposed 999 111
Original (h = 0) 999 81
Original (h = 10) 1000 276
Original (h = 20) 1000 350

4.6 Behavior Analysis

We hypothesized that an island Lm will have a
high activation level and maintains diversity when
g (Lm) is large (i.e., many types of frequent trees
are newly created in Lm). In Section 4.4, we com-
pared various methods in terms of solution quality,
and showed that the effectiveness of the proposed
method incorporating g (Lm) can be effective. Here,
we analyze the effects of the evaluation measure
F(Lm) and the local search. Table 7 presents the fi-
nal generation results of each method, where #OPT
indicates the number of trials in which the optimal
solution was found. These are averages over 30
trials. First, we verify that the ranking-based and
proposed methods outperform 1X and the original
Island model in all problems. In the symbolic re-
gression problem with function A, ALPS outper-
formed the ranking-based and proposed methods;
however, the ranking-based and proposed methods
achieved better performance than ALPS in the other
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Figure 3. Best fitness values achieved by the comparative algorithms.

Table 3. Results of the royal tree (Class-E)
problem.

Method Fitness Time [sec.]
Proposed 113202 100
Original (h = 0) 97577 47
Original (h = 10) 116238 160
Original (h = 20) 118141 197

Table 4. Results of the symbolic regression
problem (Function A).

Method Fitness Time [sec.]
Proposed 739 163
Original (h = 0) 704 117
Original (h = 10) 661 629
Original (h = 20) 683 1032

Table 5. Results of the symbolic regression
problem (Function B).

Method Fitness Time [sec.]
Proposed 815 169
Original (h = 0) 786 87
Original (h = 10) 814 424
Original (h = 20) 859 568

Table 6. Results of the symbolic regression
problem (Function C).

Method Fitness Time [sec.]
Proposed 999 111
Original (h = 0) 999 81
Original (h = 10) 1000 276
Original (h = 20) 1000 350

4.6 Behavior Analysis

We hypothesized that an island Lm will have a
high activation level and maintains diversity when
g (Lm) is large (i.e., many types of frequent trees
are newly created in Lm). In Section 4.4, we com-
pared various methods in terms of solution quality,
and showed that the effectiveness of the proposed
method incorporating g (Lm) can be effective. Here,
we analyze the effects of the evaluation measure
F(Lm) and the local search. Table 7 presents the fi-
nal generation results of each method, where #OPT
indicates the number of trials in which the optimal
solution was found. These are averages over 30
trials. First, we verify that the ranking-based and
proposed methods outperform 1X and the original
Island model in all problems. In the symbolic re-
gression problem with function A, ALPS outper-
formed the ranking-based and proposed methods;
however, the ranking-based and proposed methods
achieved better performance than ALPS in the other
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Table 7. Effects of the local search

Ant Royal (Class D) Royal (Class E)

Fitness #Opt Fitness #Opt Fitness #Opt
1X(M=1) 72.1 1 2720 9 47878.3 9
Original(M=10) 79.3 5 6144 30 97577.3 20
ALPS 82.7 4 5734 29 103974.8 22
f -evaluation 85.4 13 6144 30 107243.7 25
g-evaluation 84.6 11 6144 30 97514.9 22
Ranking-based *85.8 16 6144 30 107072.4 25
Proposed(without LS) 83.9 9 6144 30 99693.6 23
Proposed 85.2 12 6144 30 *113201.9 27

FuncA FuncB FuncC

Fitness #Opt Fitness #Opt Fitness #Opt
1X 565.2 0 424.3 0 980.7 19
Original 704.1 0 786.4 2 999.2 29
ALPS *751.1 0 793.0 8 1000.0 30
f -evaluation 745.2 0 811.7 1 999.4 30
g-evaluating 740.0 0 818.1 0 999.6 30
Ranking-based 725.0 0 824.1 0 1000.0 30
Proposed(without LS) 733.6 0 *839.3 2 999.5 29
Proposed 739.1 0 815.0 2 999.4 30

problems. These results show that both the ranking-
based and proposed methods outperform other is-
land models and a conventional method, More-
over, incorporating a local search into the proposed
method, we can observe that the performance was
improved.

Next, we analyze why the proposed method per-
formed much better in the Class-E royal tree prob-
lem. The royal tree problem is a typical benchmark
for evaluating how many partial solutions have been
found. The entire solution to this problem consists
of subtrees called perfect trees, and fitness values
are evaluated by summing the scores of these per-
fect trees, which are determined according to the
depth of each subtree. Therefore, we hypothesized
that a higher activation level would be maintained
on each island, leading to more candidates of par-
tial solutions being discovered by the small changes
in subtrees enabled by the local search. The re-
sults shown in Table 7 demonstrated that the pro-
posed method with local search achieved the best
fitness value. These results imply that the proposed
method incorporating both the proposed evaluation
measure F(Lm) and a local search offer improved
performance, which supports our hypothesis.
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Figure 4. Number of new types of frequent trees
given by proposed method.

We also investigate the history of g(Lm) in the
proposed method. We hypothesized that an island
Lm will have a high activation level and maintains
diversity when g (Lm) is large (i.e., many types of
frequent trees are newly created in Lm). We now
examine the history of g (Lm) given by the proposed
method for each of the benchmark problem. Fig-
ure 4 plots the average of ḡ over the 30 trials as a
function of the number of evaluations, where the av-
erage of the number of new types of frequent trees
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is

ḡ =
1
M

M∑
m=1

g (Lm) .

We can see that the Santa Fe ant trail and royal tree
(Class-E) problems consist of more frequent trees
than the other problems during the first half of the
generation process. Moreover, the Class-E problem
decays much more slowly than the other problems,
and the ḡ is much lower than for the Class-D prob-
lem. However, the Santa Fe ant trail and royal tree
problems are generally more affected by subtrees
than the symbolic regression problems. Therefore,
in Figure 4, these results imply that the proposed
method would continue to create new types of fre-
quent trees in these problems.

Finally, we investigated the relationship be-
tween ḡ and the solution quality by comparing the
average of the ḡ of good trials and bad trials in each
problem, where good trials indicate those that lead
to optimal solutions. The total number of trials was
30. Figure 5 shows the results for the Santa Fe ant
trail problem and Figure 6 shows the results for the
Class-E royal tree problem. From Figure 5, we can
see that there is no significant difference in ḡ be-
tween good trails and bad trials. However, in the
Class-E problem, the number of frequent trees in
good trials is clearly much higher than that in bad
trials. The partials solutions play an important role
in determining the solution quality of a royal tree
problems; therefore, we considered that the number
of new types to have increased in the Class-E royal
tree problem. From these results, we speculate that
incorporating the fitness f

(
x f

m

)
restricts the search

to better areas, and incorporating g (Lm) makes it
easier to find pieces of the partial solutions. These
results support our hypothesis.
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Figure 5. Comparison of good trials and bad trials
in terms of the number of new types of frequent
trees of the proposed method in the Santa Fe ant

trail problem.
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in terms of the number of new types of frequent
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Conclusions and Future Work

To improve the Island Model GP, it is essential
to obtain an effective migration strategy. In this pa-
per, we have described an enhanced Island Model
GP in which the migration pair changes adaptively
according to each island’s condition for maintain-
ing genetic diversity. We in this paper introduced
a real value-based novel evaluation measure based
on fitness and frequent trees according to the Build-
ing Block Hypothesis. The proposed method eval-
uates each island’s activation level in terms of both
the fitness value and how many types of frequent
trees are newly created. Based on this evaluation
measurement, some individuals migrate from an is-
land with a higher activation level to an island with
a lower activation level, and vice versa. There-
fore, the proposed method adaptively changes the
migration process in terms of the proposed evalua-
tion measurement. Moreover, the proposed method
incorporates a local search method for further per-
formance improvement. We assumed that local
searches are effective for discovering frequent trees
as candidates of partial solutions to the problems
like the royal tree problems, in which the total fit-
ness of an individual is given by accumulating sub-
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decays much more slowly than the other problems,
and the ḡ is much lower than for the Class-D prob-
lem. However, the Santa Fe ant trail and royal tree
problems are generally more affected by subtrees
than the symbolic regression problems. Therefore,
in Figure 4, these results imply that the proposed
method would continue to create new types of fre-
quent trees in these problems.

Finally, we investigated the relationship be-
tween ḡ and the solution quality by comparing the
average of the ḡ of good trials and bad trials in each
problem, where good trials indicate those that lead
to optimal solutions. The total number of trials was
30. Figure 5 shows the results for the Santa Fe ant
trail problem and Figure 6 shows the results for the
Class-E royal tree problem. From Figure 5, we can
see that there is no significant difference in ḡ be-
tween good trails and bad trials. However, in the
Class-E problem, the number of frequent trees in
good trials is clearly much higher than that in bad
trials. The partials solutions play an important role
in determining the solution quality of a royal tree
problems; therefore, we considered that the number
of new types to have increased in the Class-E royal
tree problem. From these results, we speculate that
incorporating the fitness f
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restricts the search

to better areas, and incorporating g (Lm) makes it
easier to find pieces of the partial solutions. These
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Conclusions and Future Work

To improve the Island Model GP, it is essential
to obtain an effective migration strategy. In this pa-
per, we have described an enhanced Island Model
GP in which the migration pair changes adaptively
according to each island’s condition for maintain-
ing genetic diversity. We in this paper introduced
a real value-based novel evaluation measure based
on fitness and frequent trees according to the Build-
ing Block Hypothesis. The proposed method eval-
uates each island’s activation level in terms of both
the fitness value and how many types of frequent
trees are newly created. Based on this evaluation
measurement, some individuals migrate from an is-
land with a higher activation level to an island with
a lower activation level, and vice versa. There-
fore, the proposed method adaptively changes the
migration process in terms of the proposed evalua-
tion measurement. Moreover, the proposed method
incorporates a local search method for further per-
formance improvement. We assumed that local
searches are effective for discovering frequent trees
as candidates of partial solutions to the problems
like the royal tree problems, in which the total fit-
ness of an individual is given by accumulating sub-
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trees’ fitness scores. The local search process can
change a part of a solution and enhance the combi-
nation of partial solutions.

Using well-known benchmark problems widely
adopted in the literature, we confirmed that the
proposed migration strategy offers significant per-
formance advantages over the 1X, original Island
Model GP, and ALPS methods. We also analyzed
the behavior of the proposed method and demon-
strated its validity. From the experimental results,
we observed that the proposed method offers good
performance, and confirmed that incorporating the
information about the frequent trees and the local
search into the migration strategy gives improved
results. Although we have only presented results
for the Santa Fe ant problem, two royal tree prob-
lems and three symbolic regression problems, sim-
ilar results can be achieved for other symbolic re-
gression problems. In future work, we will evaluate
our method using other benchmark problems.

The proposed method essential implements a
migration strategy based on subtrees. Several
subtree-based crossovers have been proposed: the
context-aware crossover [31, 32] and the subtree
based crossover [33, 19]. As a first step, the
proposed method adopted the simplest crossover
and had not yet been applied to these enhanced
crossover techniques. Therefore, we will work to
appropriately integrate the subtree-based crossover
into the proposed method for further performance
improvement. On the other hand, Burke et al. ex-
tensively examined the relation between diversity
measure and fitness [34]. The proposed method
measures genetic diversity on the basis of the fre-
quent trees and fitness. Thus, we will also at-
tempt to incorporate other measures into the pro-
posed method.
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trees’ fitness scores. The local search process can
change a part of a solution and enhance the combi-
nation of partial solutions.

Using well-known benchmark problems widely
adopted in the literature, we confirmed that the
proposed migration strategy offers significant per-
formance advantages over the 1X, original Island
Model GP, and ALPS methods. We also analyzed
the behavior of the proposed method and demon-
strated its validity. From the experimental results,
we observed that the proposed method offers good
performance, and confirmed that incorporating the
information about the frequent trees and the local
search into the migration strategy gives improved
results. Although we have only presented results
for the Santa Fe ant problem, two royal tree prob-
lems and three symbolic regression problems, sim-
ilar results can be achieved for other symbolic re-
gression problems. In future work, we will evaluate
our method using other benchmark problems.

The proposed method essential implements a
migration strategy based on subtrees. Several
subtree-based crossovers have been proposed: the
context-aware crossover [31, 32] and the subtree
based crossover [33, 19]. As a first step, the
proposed method adopted the simplest crossover
and had not yet been applied to these enhanced
crossover techniques. Therefore, we will work to
appropriately integrate the subtree-based crossover
into the proposed method for further performance
improvement. On the other hand, Burke et al. ex-
tensively examined the relation between diversity
measure and fitness [34]. The proposed method
measures genetic diversity on the basis of the fre-
quent trees and fitness. Thus, we will also at-
tempt to incorporate other measures into the pro-
posed method.
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