HUMAN EXPOSURE TO CYANOTOXINS AND THEIR EFFECTS ON HEALTH

Damjana DROBAC1, Nada TOKODI1, Jelica SIMEUNOVIĆ1, Vladimir BALTIĆ2, Dina STANIĆ3, and Zorica SVIRČEV1

Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad1, Oncology Institute of Vojvodina, Sremska Kamenica2, Serbia, Department of Biological Sciences, Florida International University, Miami, FL, USA3

Received in October 2012
CrossChecked in March 2013
Accepted in February 2013

Cyanotoxins are secondary metabolites produced by cyanobacteria. They pose a threat to human health and the environment. This review summarises the existing data on human exposure to cyanotoxins through drinking water, recreational activities (e.g., swimming, canoeing or bathing), the aquatic food web, terrestrial plants, food supplements, and haemodialysis. Furthermore, it discusses the tolerable daily intake and guideline values for cyanotoxins (especially microcystins) as well as the need to implement risk management measures via national and international legislation.

KEY WORDS: aquatic animals, cyanobacterial blooms, dietary supplements, haemodialysis, microcystins

Cyanobacteria, also known as blue green algae, are present in many water ecosystems. Their increased growth is referred to as cyanobacterial bloom (1). Large cyanobacterial blooms are classified as “harmful” when they lead to negative environmental impacts such as mortality, ecosystem instability, and the production of highly active toxic compounds known as cyanotoxins (2). Cyanotoxins are diverse in chemical structure and toxicity. Depending on the human organ affected, cyanotoxins are classified as hepatotoxins (microcystins, nodularin, cylindrospermopsin), neurotoxins (saxitoxins, anatoxin-a, anatoxin-a(s), homoanatoxin-a), cytotoxins (aplysiatoxin, debromoaplysiatoxin, lingbyatoxin, lipopolysaharide endotoxin), and skin and gastrointestinal irritants (3, 4). The most common cyanotoxin group are microcystins (MCs) (1), while microcystin-LR (MC-LR) is their most toxic structural variant (5). Toxic cyanobacteria and their toxic metabolites pose a health hazard to plants and animals (6, 7). These toxins can also cause illnesses in humans (8, 9), or even death when one is exposed through haemodialysis (10). Following exposure to cyanotoxins, symptoms such as abdominal pain, vomiting, diarrhoea, skin irritation, weakness, sore throat, pale mucous membrane, and muscle tremors were observed in animals and humans (1). MCs require additional attention, not only for their ability to cause acute poisoning, but also for their ability to initiate cancer through acute doses and potentially promote it through chronic exposure to low MC concentrations in drinking water (9, 11, 12). In 2006 in Lyon, France, the International Agency for Research on Cancer (IARC), performed an assessment of the cancerogenesis of MC-LR and concluded that MC-LR is a possible carcinogen for humans, classifying it as a group 2B carcinogen (13). The health threats caused by cyanotoxins, especially MCs, have led the World Health Organization (WHO) to establish a tolerable daily intake (TDI) (0.04 μg kg\(^{-1}\)) and a provisional
guideline value for MC-LR in drinking water (1 μg L⁻¹) (14). Also, guidance values for other exposure pathways such as recreational water, food, and supplements, were established (15). Some countries accepted the stated values (the Czech Republic, France, Japan, Korea, New Zealand, Norway, Poland, Brazil, and Spain), while others formulated their own values, depending on the local conditions (Australia, Canada). The most pervasive legislation was introduced in Brazil, setting the mandatory standard to 1 μg L⁻¹ for MCs, and the recommended values for saxitoxins and cylindrospermopsin to 3 μg L⁻¹ and 15 μg L⁻¹, respectively (16).

This review focuses on the cyanobacterial toxicity and cyanotoxin accumulation in various aquatic organisms, edible plants, dietary supplements, and drinking water supplies as probable pathways for toxins to reach humans. A possible derivation and implementation of guideline values for these cyanotoxins is also discussed.

Routes of exposure

The major routes of human exposure to cyanotoxins are: chronic and accidental ingestion of contaminated drinking water; inhalation or contact with the nasal mucous membrane, and dermal contact with toxins during recreational activities such as swimming, canoeing or bathing; consumption of contaminated vegetables and fruits irrigated with water containing cyanotoxins; consumption of aquatic organisms (fish, shellfish, etc.) from contaminated waters; oral intake of cyanobacterial dietary supplements (if cyanotoxin levels are not controlled); and the specific intravenous route caused by dialysis.

Ingestion of contaminated drinking water

Direct ingestion of contaminated drinking water is a frequent route of cyanotoxin intake. If the water is obtained from a surface water source during cyanobacterial bloom, it is possible that the water had become contaminated with toxins released during cell decomposition (1). There are numerous cases of cyanobacterial toxins detected in raw and final water throughout the world (Argentina, Australia, Bangladesh, Canada, Czech Republic, China, Finland, France, Germany, Latvia, Poland, Thailand, Turkey, Spain, Switzerland, USA) (15, 17-19). High levels of risk to human health are linked to the ingestion of large cyanotoxin quantities from water or the intake of small doses during extended chronic exposure (20).

Hepatotoxins in drinking water could be a risk factor for primary liver cancer (PLC), but only a limited number of epidemiological studies have confronted this issue. The prevailing opinion in the literature is that the development of PLC results from cirrhosis and chronic viral hepatitis (HBV and HCV). However, this could not be concluded from the obtained data on the incidence of PLC, HBV, HCV, and liver cirrhosis mortality in central Serbia from 2000 to 2006; no correlation between PLC and these diseases was found (21). On the other hand, epidemiological studies in Serbia have shown that the consumption of drinking water contaminated by MCs could be connected to human PLC (9, 20, 22). Similarly, a relationship between an increased risk of PLC and the quality of surface water was detected by Fleming et al. (23) in Florida. This kind of analysis was also conducted in China, where some authors (24) suggested that hepatotoxins from water reservoirs containing cyanobacteria triggered the development of PLC. Based on these reports, MCs could be an important chemical and external factor in the development of PLC.

Dermal contact and exposure through inhalation

Dermal contact occurs in recreational waters which endure the presence of cyanobacterial blooms. A wide range of symptoms associated with recreational exposure to cyanobacteria have been described: desquamation, skin rashes, asthma, pneumonia, dry sporadic cough with vomiting and other gastrointestinal symptoms, hay fever, conjunctivitis, ear and eye irritation, allergic reactions, and acute illnesses with symptoms such as severe headache, myalgia, vertigo, and blistering in the mouth. These symptoms were reported in the coastal waters of Japan, Hawaii, Australia, and Florida (25-28). Freshwater cyanobacterial blooms have also caused similar symptoms after swimming or water contact sports (29).

The cyanobacterial mats that form on the surface of coastal waters get broken apart by waves. Persons swimming in the affected waters collect cyanobacterial filaments under their bathing suits. The cells that accumulate under the fabric may come in contact with the skin and lead to skin irritation (30). “Swimmer’s itch” is a severe contact dermatitis which occurs after swimming in marine waters that contain specific cyanobacterial blooms (e.g., Lyngbia majuscula). Within a period ranging from a few minutes to a few hours, itching and burning occurs. Visible dermatitis
and redness develop after tree to eight hours, followed by blisters and deep desquamation (31).

During recreation, one potential exposure route is inhalation. Respiratory distress has been reported after exposure to certain marine and freshwater blooms (7, 32, 33). Intranasal administration of MC-LR to mice has led to liver damage and extensive necrosis of the olfactory and respiratory zone epithelium. Moreover, the sensitivity was approximately 10 times greater than through oral exposure (34). Therefore, potential exposure to cyanotoxins through inhalation should not be ignored during showering, water sports (particularly water-skiing), and work practices involving agricultural or industrial spray water (29).

Also, cyanobacteria are vital primary producers in desert environments. Samples from dry, ephemeral river beds, and supertidal salt flats in Qatar were analysed for cyanotoxins. Based on the level of MCs detected in the crust of all samples (at mass fractions between 1.5 ng g⁻¹ and 53.7 ng g⁻¹), the amount of dust inhaled by a person could have surpassed the TDI value of 1 ng to 2 ng of MCs per kilogram per day for an average adult. The presence of MCs, and potentially anatoxin-a(s), in desert crusts has substantial implications for the human health (35).

Terrestrial and aquatic plants

Crops can come into contact with cyanotoxins when surface water bodies containing cyanobacteria are used for spray irrigation or watering. Consequently, both plant yield and quality are affected. Furthermore, if the MC absorption exceeds the recommended tolerable limits, the affected plant might pose a risk for human and animal health (36).

Previous research has revealed that cyanotoxins can have negative effects on plants (37-40). Seedling exposure to cyanotoxins can cause growth inhibitions in a variety of terrestrial plants (41-44). The growth, development, photosynthetic activity, productivity, and mineral nutrition of wheat (Triticum durum), maize (Zea mays), pea (Pisum sativum), and lentil (Lens esculenta) cultivars was also found to be diversely affected by a cyanobacterial extract with MC-LR (36). It was also noted that, both submerged and emergent, aquatic plants absorb MC-LR from low external concentrations, and accumulate it in the shoot tissue (39, 45, 46). Furthermore, when exposed to MC-LR, aquatic plants exhibited an inhibition of growth and photosynthetic oxygen production, while their chlorophyll pigments became bleached (47).

Previous studies have shown that MC can be detected in the tissues of exposed terrestrial and aquatic plants (38, 40, 42, 43, 45, 48-50). Based on the results of a glasshouse experiment, when a 60 kg individual consumes 65 g to 75 g of fresh weight salad (6.8 g to 7.9 g dry weight), made with lettuce irrigated by lake water containing MCs, he/she also ingests approximately 5.8 μg of MCs per meal (0.10 μg kg⁻¹ of body weight). This level is above the provisional WHO TDI of 0.04 μg kg⁻¹ b.w. per day for MC-LR consumed throughout a lifetime (51). One study confirmed that shoot cultures of apple (Malus pumila) accumulated an MC concentration of as much as (510.23±141.10) ng equivalents of MC-LR per gram of fresh weight after 14 days of exposure to 3 μg mL⁻¹ of MCs (52). Pethert et al. (53) documented the uptake of MC-LR and MC-LF by the seedling roots of 11 agricultural plants, along with their ability to translocate them to the shoots. The MCs recovered from the exposed plants suggested that, when MC-containing water is used for irrigation, terrestrial plants exhibit toxic effects on the human health (52).

In rice fields, cyanobacteria can fixate nitrogen from the atmosphere and provide an important nitrogen source for rice plants (54). However, the MC uptake mechanisms of rice plants are not yet fully understood, which makes it hard to grasp the full impact of cyanotoxin exposure on human health.

Cyanobacterial toxicity through the aquatic food web

The bioaccumulation of cyanotoxins can occur in a wide range of aquatic animals used for human consumption. MCs were detected in freshwater shrimps (Palemon modestus, Macrobrachium nipponensis), and red swamp crayfish (Procambarus clarkii) (55, 56), while in the marine environment, saxitoxins were detected in pearl oysters (Pinctada maxima) (57). Also, cylindrospermopsin was found in bivalve hemolymphs, viscera, gonads, and feet (58).

Saxitoxins from the Anabaena circinalis species can accumulate in Australian freshwater mussels after only one week of exposure to a cell density of 100,000 cells per millilitre, which usually occurs during this species’ bloom (59). Furthermore, MC was detected in the hepatopancreas, viscera, gonad, and foot of the freshwater snail Bellamya aeruginosa (60). Chen et al. (60) found that most toxins are located in the inedible parts, which means that removing the hepatopancreas, digestive tract, and gonads before consumption could decrease the risk of intoxication.
However, since for instance snails are usually boiled whole, this creates a pathway for the ingestion of MCs. Furthermore, it should be noted that boiling does not destroy most of the known cyanobacterial toxins (15). White et al. (61) found cylindrospermopsin in another freshwater snail species (*Melanoides tuberculata*), generally not used in the human diet. Nonetheless, the aquatic food chain and bioaccumulation enables cyanotoxins to ultimately reach humans.

Being at the very top of the aquatic food chain, fish are probably the most exposed to cyanotoxins, which may accumulate in the liver, muscles, gills, guts, and kidneys (62). Fish are exposed through feeding or breathing (63). MCs are actively taken up by the liver, disrupting normal cellular activity by inhibiting protein phosphatases (64, 65), which are particularly important during fish embryogenesis, since they regulate critical developmental processes (66).

In early stages of life, exposure to MCs can disrupt normal embryonic hatching, decrease the survival and growth rate, and cause certain histopathological effects (enlarged and opaque yolk sac, small head, curved body and tail, hepatobiliary abnormalities, ultrastructural alterations in hepatocytes, heart rate perturbations). In adults and juveniles, MC exposure can influence the growth rate and osmoregulation, increase the heart rate and liver enzyme activity in the serum, alter behaviour, and cause histopathological changes in the liver, intestines, kidneys, heart, spleen, or gills. These abnormalities vary depending on the cyanotoxin dose and exposure routes (63). When exposed to a lower MC concentration (10 μg L⁻¹ and 100 μg L⁻¹), carp hepatocytes died through apoptosis, whereas when a higher one was applied (1000 μg L⁻¹), they died through necrosis (67). Histopathological analysis showed that cyanobacterial toxins are capable of killing fish (68).

Furthermore, it was observed that MCs primarily accumulate in fish livers, but can also be detected in muscles and viscera (63). MC concentrations are often highest in the gut and liver, lower in kidneys and gonads, and the lowest in muscle tissue (69-71). Romo et al. (72) investigated toxin accumulation in the fish tissues of the commercial species *Liza* sp. They found high MC concentrations in the liver, intestines, gills and muscles. Moreover, the mean MC concentration in the muscles corresponded to a daily intake of 0.025 μg kg⁻¹, while 13% of the analysed specimens had values above the recommended guideline concentration. On average, 200 tons of *Liza* sp. is sold each year, which is, based on the mean MC value in this study, equivalent to nearly 350 mg of MCs (5 ng g⁻¹ fish muscle). This amount is potentially even greater if we consider that birds and other animals feed on fish (72). However, new studies have shown that MC biodilution is the prevailing process in aquatic food webs, consistent across groups of aquatic consumers with the exception of zooplankton and zooplanktivorous fish (73). Still, more thorough research is needed on this subject.

Cyanotoxin accumulation in fish tissue may pose a risk to human health. The risks associated with consuming aquatic products were evaluated by analysing 26 of the most frequently consumed fish and shellfish species from three large lakes in China. The results indicated that most of the aquatic products from these lakes seemed to have been unsafe for human consumption due to MC accumulation, with the estimated daily intake values being 1.5 to 148 times higher than the TDI (74). The distribution and bioaccumulation of MCs in *Carassius gibelio* was surveyed in 13 Greek lakes. MCs were found in livers, intestines, kidneys, brains, ovaries, and muscles. MC average values in fish muscles were (7.1±2.5) ng g⁻¹, while the concentrations found in several lakes exceeded the WHO TDI. According to the authors, a healthy 60 kg person who consumed a 300 g serving of *C. gibelio* on average daily would be at risk, even more so in the case of the elderly, children, or sensitive individuals (75).

The Wild Nile and redbreast tilapia (*Oreochromis niloticus* and *Tilapia rendalli*) were sampled at the Brazilian eutrophic stations of the Funil and Furnas reservoirs. All of the sampled fish contained MCs (from 0.8 μg g⁻¹ to 32.1 μg g⁻¹ liver; from 0.9 ng g⁻¹ to 12.0 ng g⁻¹ muscle). Among the 27 fish examined at both reservoirs, 26% (all *O. niloticus*) were above the WHO TDI. Furthermore, even though the MC concentrations (986 ng L⁻¹ at the Funil and 941 ng L⁻¹ at the Furnas reservoir) were below the WHO guideline for drinking water, the MCs in the fish had accumulated to toxic levels (76).

It has also been found that different species of fish accumulate different amounts of MCs. One study found the MC content in the liver and muscle to be highest in carnivorous fish, followed by omnivorous fish, while the lowest was in phytoplanktivorous and herbivorous fish. MCs can therefore accumulate upwardly in the food chain (71). In another study, MCs in the livers and guts were highest in phytoplanktivorous fish, followed by omnivorous and
carnivorous fish. On the other hand, MCs in muscles were highest in omnivorous fish, then phytoplanktivorous, and finally in carnivorous fish (77). It is obvious that the feeding style of a fish and the cyanotoxin accumulation in its tissue still cannot be clearly interrelated (78).

An investigation of cylindrospermopsin bioaccumulation in the muscle tissue of the redclaw crayfish (*Cherax quadricarinatus*) and the visceral tissues of the rainbow fish (*Melanotaenia eachamensis*) showed that exposure to this toxin may occur in aquaculture ponds (79). The accumulation of saxitoxins was investigated by monitoring cyanotoxin levels in the liver and muscle samples of *Oreochromis niloticus*, showing that the Wild Nile tilapia is capable of bioaccumulating saxitoxins (80). A recent study at Lake Catemaco (Veracruz, Mexico), a lake with cyanobacterial blooms throughout the year, showed a presence of cylindrospermopsin and saxitoxins in fish species used for local consumption, and also indicated possible bioaccumulation (81). Due to this potential presence of cyanotoxins in edible aquatic organisms, toxic cyanobacteria blooms in aquacultures could pose a risk to fish quality and, consequently, affect public health. Recently, a more comprehensive review was published on this topic (82).

Cyanobacterial dietary supplements

Cyanobacteria intake can also be voluntary, mostly for its rich protein content (e.g., *Spirulina*, *Nostoc*, and *Aphanizomenon flos-aquae*). Blue green algae supplements (BGAS) are mainly sold in industrialised countries, due to their beneficial health effects such as detoxification, weight loss, elevated mood and energy, and increased alertness (83, 84). Furthermore, some of these products are used in the pharmacological therapy of Attention Deficit Hyperactivity Disorder in children (85).

These products come in the form of pills, capsules, and powders, and can be consumed without any medical consultation. Since these products are natural, it is assumed that they are safe, and therefore BGAS may be taken at high doses and over a long period of time. However, they can have negative health effects, including symptoms such as nausea, vomiting, and diarrhoea. Although gastro-intestinal disturbance can be associated with BGAS consumption, it is usually attributed to the “detoxification” of the body. Also, certain potentially adverse effects can go unrecognized, while in many cases, the causative agent(s) and toxicity mechanisms are unclear (86).

However, traces of cyanotoxins have been found in BGAS products. Despite the general opinion that *Spirulina* is not toxic, epoxyanatoxin-a and dihydroanatoxin-a have been identified in a Spirulina-based BGAS (87). Also, it was found that *Spirulina fusiformis* can produce low concentrations of MCs and anatoxin-a (88, 89). In addition, the Spirulina-based BGAS was suspected to cause liver damage in a middle-aged Japanese person (90). The *Aph. flos-aquae* species was found to produce anatoxin-a (91) and saxitoxins (92, 93), as well as BMAA (β-Methylamino Alanine) (94). *A. flos-aquae* is generally harvested from natural lakes, where it coexists with other cyanobacterial species such as *Microcystis* sp. (83), which implies that BGAS consumers may be exposed to MCs and other toxins.

Several independent investigations reported high MC levels in BGAS products (95-98), sometimes even higher than the provisional guidance value of 1 μg g⁻¹ d. w. set by the Oregon Health Division and Oregon Department of Agriculture (86). In studies from 2000 and 2001, before awareness generally increased and regulations started being implemented, MC levels in BGAS products reached as much as 35 μg g⁻¹ d. w. (86, 95). In the German and Swiss markets, 8 out of 13 BGAS products exceeded 1.0 μg equiv of MC-LR per gram d.w. (97). However, it is important to stress that not all BGAS products contain high MC concentrations, and that certain brands are known to have different MC concentrations from batch to batch (86, 97).

The Oregon provisional tolerable level for MCs in BGAS (1.0 μg g⁻¹ MC-LR of dry weight) was calculated for adults, which means that children could be even more susceptible to MCs. Apart from the body weight of a consumer, guidance values for MC-LR are also influenced by the daily amount of BGAS consumed, which largely depends on the individual, and can range from 0.25 g to 20 g (86, 99). Therefore, a daily consumption of several grams, which may contain from 1 μg equivalent to 35 μg equivalent MC-LR per gram of dry weight (96), could exceed the TDI and lead to long-term health problems. However, these could be avoided with more frequent control of BGAS products for cyanotoxin contamination and a decrease in the present guidance values. Based on these data, BGAS products can pose a health threat to consumers, especially children, so this exposure...
pathway should receive more attention in future research.

The intravenous route

In 1996, an incident took place at the haemodialysis centre in Caruaru, Brazil. After a routine haemodialysis treatment, most patients (116 out of 131) experienced visual disturbances, nausea, vomiting, and muscle weakness. After a period of time, one hundred patients developed acute liver failure, and the “Caruaru Syndrome” lead to 52 fatalities. MCs were detected in all of the patient serum and liver tissue samples, while cylindrospermopsin was found in the carbon and resins from the clinic’s water treatment system. Moreover, cyanobacteria had a powerful presence in the local water reservoirs. Finally, it was concluded that the main contributing factor to the death of these patients was intravenous exposure to MCs (MC-YR, MC-LR and MC-AR). In 2000, cyanobacteria and cyanotoxins were incorporated into Brazilian legislation regarding the quality of drinking water (100).

DISCUSSION

For certain critical routes of exposure, the WHO and certain other institutions provided guideline values for MC-LR based on the tolerable daily intake. The TDI is the amount of a potentially harmful substance that can be consumed daily over a lifetime with negligible risk of adverse health effects. The guideline value for MC-LR was derived from a 13-week mouse oral study with pure MC-LR. Based on the liver histopathology and serum enzyme level changes, a NOAEL (no-observed adverse effect level) of 40 μg kg⁻¹ b.w. per day was determined (101). By applying a total uncertainty factor of 1000 (10 for intra-species variability, 10 for inter-species variability and 10 for limitations in the database), a provisional TDI of 0.04 μg kg⁻¹ b.w. per day was calculated for MC-LR. Then, a proportion of the total intake from various sources of exposure (e.g., drinking water, food, etc.), often termed allocation factors, was multiplied by the body weight of a standardized adult (60 kg or 70 kg) and the TDI, and then divided by the daily intake of the source (e.g., 2 L drinking water, 0.1 kg fish, 2 g BGAS).

However, it would be advisable to revise the obtained guideline values. Although the main target for MCs is the liver, it can affect other organs, such as the colon (11, 102), intestines (103), brain (104, 105), lungs (105, 106), heart (107), kidneys (108-110), and reproductive system (111, 112). Also, over 90 analogues of MCs have been identified (113) and found to be toxic, but are not presently monitored. Nonetheless, a given species of cyanobacteria can produce a variety of potent cyanotoxins, and for most of them, the TDI cannot be derived due to a lack of toxicological data. So far, research on cyanobacterial carcinogenicity and tumour promotion has mainly focused on hepatotoxins (e.g., MC, nodularin, and cylindrospermopsin). However, cyanobacteria could also produce other metabolites with potential tumour-promoting effects (114). Furthermore, a difference in the detected toxin concentration arises when diverse methods are applied. Current detection methods allow only the estimation of cyanotoxin concentrations due to their various limitations (e.g., sensitivity/selectivity), while most methods only measure free MCs (MCs that are not covalently-bound). Therefore, more precise and more reliable detection methods are necessary to derive adequate guideline values (15).

The level of risk to the human health depends on the cyanotoxin levels and exposure pathways. In a recent study, MCs were detected in the serum samples (average 0.39 ng mL⁻¹) of fishermen from Lake Chaohu (China). The randomly chosen fisherman (14 male and 21 female) lived on the lake from 5 to over 10 years. During this period of time, they drank water from the lake and ate mostly aquatic products (fish, shrimp, and snails). The daily intake by the fishermen was estimated to be within the range from 2.2 μg to 3.9 μg MC-LReq, whereas the provisional WHO TDI for a daily lifetime exposure is 2 μg to 3 μg per person (115). The aforementioned data bring to question if extended exposure within the range of the TDI may still present a health risk.

Bearing in mind the possible chronic processes of accumulation in the human body, another issue should not be neglected: What kind of consequences does long-term exposure through different routes (drinking water, soup, fish soup, fish meat and seafood, supplements, consumption of vegetables after irrigation, recreational water activities, showering, etc.) have on the human health when cyanotoxin levels are elevated or even within the tolerable range? To prevent any potential risks, guideline values for cyanotoxins should be reviewed in light of more recent publications, particularly on potential exposure through food, and implemented into national
regulations taking local exposure patterns into account. Also, it is recommended to improve sample preparation and detection methods for cyanotoxins, as well as the continuous monitoring of water, food, and BGAS products. But most importantly, it is necessary to control eutrophication, and subsequently reduce cyanobacterial growth and exposure to cyanotoxins.

CONCLUSION

This review has shown that humans can be exposed to cyanotoxins through various routes. The accumulation of cyanotoxins, particularly MCs, in some aquatic animals, edible plants, and dietary supplements raised awareness about the importance of food as an exposure route by which MCs can enter the human body. The precise doses of these toxins are still an open issue which should be solved in order to prevent possible health risks. Therefore, the formulation and implementation of risk management measures via national and international legislation is necessary to preserve aquatic environments as well as the human health.

Acknowledgements

This work was supported by the Ministry of Education and Science of the Republic of Serbia (Project number 176020).

REFERENCES

17. Westrick JA. Everything a manager should know about algal toxins but was afraid to ask. JAWWA 2003;95:26-34.
20. Svirčev Z, Baltić V, Gantar M, Juković M, Stojanović D, Stojanović D. Freshwater cyanobacterial blooms and cyano...
production in Serbia in the past 25 years. Geographica
K, Stinn J. Bluegreen algal (cyanobacterial) toxins, surface
drinking water, and liver cancer in Florida. Harmful Algae
25. Stewart I, Webb PM, Schluter PJ, Shaw GR. Recreational
26. Burke WA, Tester PA. Skin problems related to noninfectious
27. Metcalf JS, Richer R, Cox PA, Codd GA. Cyanotoxins in
desert environments may present a risk to human health. Sci
scitotenv.2012.01.053
Campo F. Physiological changes in
Trichodesmium in desert environments may present a risk to human health. Sci
scitotenv.2012.01.053
Cyanobacterial microcystin-LR is a potent and specific
inhibitor of protein phosphatases 1 and 2A from both
30. Abe T, Lawson T, Weyers JDB, Codd GA. Microcystin-LR
inhibits photosynthesis of Phaseolus vulgaris primary leaves:
implications for current spray irrigation practice. New Phytol
31. Pflugmacher S, Wiegand DG, Carpenter EJ. A neurotoxic factor associated with the bloom-forming
32. Littoral Task Force (LTF). Factors Associated with the
Proliferation of the Toxic Cyanobacterium Lyngbya
majuscula in Coastal Waters of Queensland: Triggers,
Ecophysiology and Toxicology, Executive Summary 1.
Brisbane: University of Queensland; 1998.
33. Fitzgeorge RB, Clark SA, Keevil CW. Routes of intoxication.
In: Codd GA, Jefferies TM, Keevil CW, Potter E, editors.
Ecophysiology and Toxicology, Executive Summary 1.
Brisbane: University of Queensland; 1998.
34. Fitzgeorge RB, Clark SA, Keevil CW. Routes of intoxication.
In: Codd GA, Jefferies TM, Keevil CW, Potter E, editors.
Ecophysiology and Toxicology, Executive Summary 1.
Brisbane: University of Queensland; 1998.
35. Metcalf JS, Richer R, Cox PA, Codd GA. Cyanotoxins in
desert environments may present a risk to human health. Sci
scitotenv.2012.01.053
36. McElhiney J, Lawton LA, Leifert C. Investigations into the
inhibitory effects of microcystins on plant growth, and the
toxicity of plant tissues following exposure. Toxicon 2001;39:1411-20. doi: 10.1016/S0041-0101(01)00100-3
37. Kurki-Helasmo K, Meriluoto J. Microcystin uptake inhibits
growth and protein phosphatase activity in mustard (Sinapis
38. Pflugmacher S, Wiegand C, Beattie KA, Codd GA, Steinberg
CEW. Uptake of the cyanobacterial hepatotoxin microcystin-
Microcystin-RR-induced accumulation of reactive oxygen
species and alteration of antioxidant systems in tobacco BY-
toxicon.2005.06.015
40. McElhiney J, Lawton LA, Leifert C. Investigations into the
inhibitory effects of microcystins on plant growth, and the
toxicity of plant tissues following exposure. Toxicon 2001;39:1411-20. doi: 10.1016/S0041-0101(01)00100-3
41. Pflugmacher S. Possible allelopathic effects of cyanotoxins,
with reference to microcystin-LR, in aquatic ecosystems.
42. Codd GA, Metcalf JS, Beattie KA. Retention of Microcystis
eruginosa and microcystin by salad lettuce (Lactuca sativa)
after spray irrigation with water containing cyanobacteria.
43. Mitrovic SM, Allis O, Furay A, James KJ. Bioaccumulation and
harmful effects of microcystin-LR in the aquatic plants
Lemma minor and Wolffia arrhiza and the filamentous alga
Chlaidophora fracta. Ecotoxicol Environ Safe 2005;61:345-
52. doi: 10.1016/j.ecoenv.2004.11.003
44. Jarvenpaa S, Lundberg-Niinisto C, Spoof L, Sjovall O,
Tyttystjarvi E, Meriluoto J. Effects of microcystins on broccoli
and mustard, and analysis of accumulated toxin by liquid
chromatography-mass spectrometry. Toxicon 2007;49:865-
74. doi: 10.1016/j.toxicon.2006.12.008
45. Crush JR, Briggs LR, Sprosen JM, Nichols SN. Effect of
irrigation with lake water containing microcystins on
microcystin content and growth of ryegrass, clover, rape,
20331
Drobac D, et al. EFFECTS OF CYANOTOXINS IN HUMANS
Ahr Hig Rada Toksikol 2013;64:305-316

64. Tencalla F, Dietrich D. Biochemical characterization of microcystin toxicity in rainbow trout (Oncorhynchus mykiss). Toxicol 1997;35:383-95. doi: 10.1016/S0041-0101(96)00153-5

70. Li XY, Chung IK, Kim JI, Lee JA. Subchronic oral toxicity of microcystin in common carp (Cyprinus carpio L.) exposed to Microcystis under laboratory conditions. Toxicon 2004;44:821-7. doi: 10.1016/j.toxicon.2004.06.010

71. Xie LQ, Xie P, Guo LG, Li L, Miyabara Y. Organ distribution and bioaccumulation of microcystins in freshwater fish at different trophic levels from the eutrophic Lake Chaoahu, China. Environ Toxicol 2005;20:293-300.

Sažetak

PUTEVI IZLOŽENOSTI LJUDI CIJANOTOKSINIMA I NJIHOVI UTJECAJI NA ZDRAVLJE

Cijanotoksini su sekundarni metaboliti potencijalno opasni za ljudsko zdravlje i okoliš, koje proizvode cijanobakterije. Ovaj pregledni rad donosi prikaz postojećih podataka o izloženosti ljudi cijanotoksinima putem vode za piće, rekreacije, vodenog hranidbenog lanca, kopnenih biljaka i nekih drugih specifičnih puteva (dodaci prehrani i intravenozni put). Nadalje, u njemu se raspravlja o dopuštenom dnevnom unosu (TDI) i preporučenim vrijednostima za cijanotoksine (naročito mikrocistine) i nužnost provedbe mjera upravljanja rizicima putem nacionalnih i međunarodnih zakona. To su mjere od najveće važnosti za očuvanje okoliša i ljudskog zdravlja.

KLJUČNE RIJEČI: cvjetanje cijanobakterija, dodaci prehrani, hemodijaliza, mikrocistini, vodene životinje

CORRESPONDING AUTHOR:

Damjana Drobac
Department of Biology and Ecology
Faculty of Sciences, University of Novi Sad
Novi Sad, Serbia
E-mail: biometatandem@gmail.com