1. Godekmerdan A, Ozden M, Ayar A, Gursu FM, Ozan AT, Serhatlioglu S. Diminished cellular and humoral immunity in workers occupationally exposed to low levels of ionizing radiation. Arch Med Res 2004;35:324–8. doi: 10.1016/j.arcmed.2004.04.00510.1016/j.arcmed.2004.04.00515325507Search in Google Scholar

2. Oskouii MR, Refahi S, Pourissa M, Tabarraei Y. Assessment of humoral immunity in workers occupationally exposed to low levels of ionizing radiation. Life Sci J 2013;10:58–62.Search in Google Scholar

3. Rödel F, Frey B, Multhoff G, Gaipl U. Contribution of the immune system to bystander and non-targeted effects of ionizing radiation. Cancer Lett 2015;356:105–13. doi: 10.1016/j.canlet.2013.09.01510.1016/j.canlet.2013.09.01524139966Search in Google Scholar

4. Voos P, Fuck S, Weipert F, Babel L, Tandl D, Meckel T, Hehlgans S, Fournier C, Moroni A, Rödel F, Thiel G. Ionizing radiation induces morphological changes and immunological modulation of Jurkat cells. Front Immunol 2018;9:922. doi: 10.3389/fimmu.2018.0092210.3389/fimmu.2018.00922593675629760710Search in Google Scholar

5. Shahid S, Mahmood N, Nawaz Chaundhry M, Sheikh S, Ahmad N. Mutations of the human interferon alpha-2b (hIFN-α2b) gene in occupationally protracted low dose radiation exposed personnel. Cytokine 2015;73:181–9. doi: 10.1016/j.cyto.2015.02.00810.1016/j.cyto.2015.02.00825768396Search in Google Scholar

6. Shahid S, Mahmood N, Nawaz Chaundhry M, Ahmad N. Mutations of the human interferon alpha-2b (hIFN-α2b) gene in low-dose natural terrestrial ionizing radiation exposed dwellers. Cytokine 2015;76:294–302. doi: 10.1016/j.cyto.2015.05.01110.1016/j.cyto.2015.05.01126092410Search in Google Scholar

7. Parmar S, Platanis LC. Interferons: mechanisms of action and clinical implications. Curr Opin Oncol 2003;15:431–9. PMID: 1462422510.1097/00001622-200311000-0000514624225Search in Google Scholar

8. Brandacher G, Winkler C, Schroecksnadel K, Margreiter R, Fuchs D. Antitumoral activity of interferon-gamma involved in impaired function in cancer patients. Curr Drug Metab 2006;7:599–612. doi: 10.2174/13892000677801776810.2174/13892000677801776816918315Search in Google Scholar

9. Bose A, Baral R. IFNα2b stimulated release of IFNgamma differentially regulates T cell and NK cell mediated tumor cell cytotoxicity. Immunol Lett 2007;108:68–77. doi: 10.1016/j.imlet.2006.10.00210.1016/j.imlet.2006.10.00217112599Search in Google Scholar

10. Levin D, Schneider WM, Hoffmann HH, Yarden G, Busetto AG, Manor O, Sharma N, Rice CM, Schreiber G. Multifaceted activities of type I interferon are revealed by a receptor antagonist. Sci Signal 2014;7:ra50. doi: 10.1126/scisignal.200499810.1126/scisignal.2004998431187624866020Search in Google Scholar

11. Shahid S, Nawaz Chaudry M, Mahmood N, Sheikh S. Mutation of the human interferon alpha-2b gene in brain tumor patients exposed to different environmental conditions. Cancer Gene Ther 2015;22:246–61. doi: 10.1038/cgt.2015.1210.1038/cgt.2015.1225837663Search in Google Scholar

12. Shahid S, Nawaz Chaundhry M, Mahmood N. Mutations of the human interferon alpha-2b (hIFNα-2b) gene in cancer patients receiving radiotherapy. Am J Cancer Res 2015;5:2455–66. PMCID: PMC4568781Search in Google Scholar

13. Kazymbet PK, Bakhtin MM, Imasheva BS. Population radiation level of the north Kazakhstan by natural sources of ionized radiation. Astana Med J 2006;1:26-8.Search in Google Scholar

14. Maffei F, Angelini S, Forti GC, Lodi V, Mattioli S, Hrelia P. Micronuclei frequencies in hospital workers occupationally exposed to low levels of ionizing radiation: influence of smoking status and other factors. Mutagenesis 2002;17:405–9. doi: 10.1093/mutage/17.5.40510.1093/mutage/17.5.40512202628Search in Google Scholar

15. Trott K, Rosemann M. Molecular mechanisms of radiation carcinogenesis and the linear, non-threshold dose response model of radiation risk estimation. Radiat Environ Biophys 2000;39:79–87. PMID: 1092937610.1007/s00411000004710929376Search in Google Scholar

16. Gadhia P, Shah N, Nahata S, Patel S, Patel K, Pithawala M, Tamakuwala D. Cytogenetic analysis of radiotherapeutic and diagnostic workers occupationally exposed to radiations. Int J Human genet 2004;4:65. doi. 10.1080/09723757.2004.1188587210.1080/09723757.2004.11885872Search in Google Scholar

17. Jin YW, Na YJ, Lee YJ, An S, Lee JE, Jung M, Kim H, Nam SY, Kim CS, Yang KH, Kim SU, Kim WK, Park WY, Yoo KY, Kim CS, Kim JH. Comprehensive analysis of time-and dose-dependent patterns of gene expression in a human mesenchymal stem cell line exposed to low-doses ionizing radiation. Oncol Rep 2008;19:135–44. doi: 10.3892/or.19.1.13510.3892/or.19.1.135Search in Google Scholar

18. Kazakh Ministry of Justice, Centre of Legal Information. О Стратегическом плане Агентства Республики Казахстан по атомной энергии на 2012 – 2016 годы [Strategic Plan of the Atomic Energy Agency of the Republic of Kazakhstan for 2012–2016, in Russian]. [displayed 27 March 2019]. Available at http://www.adilet.zan.kz/rus/docs/P1200001806/linksSearch in Google Scholar

19. Angelini S, Kumar R, Carbone F, Maffei F, Cantelli-Forti G, Violante FS, Lodi V, Curti S, Hemmini K, Hrelia P. Micronuclei in humans induced by exposure to low level of ionizing radiation: influence of polymorphismsin DNA repair genes. Mutat Res 2005;570:105–17. doi: 10.1016/j.mrfmmm.2004.10.00710.1016/j.mrfmmm.2004.10.00715680408Search in Google Scholar

20. Milić M, Rozgaj R, Kašuba V, Jazbec AM, Starčević B, Lyzbicki B, Ravegnini G, Zenesini C, Musti M, Hrelia P, Angelini S. Polymorpisms in DNA repair genes: link with biomarkers of the CBMN cytome assay in hospital workers chronically exposed to low doses of ionising radiation. Arh Hig Rada Toksikol 2015;66:109–20. doi: 10.1515/aiht-2015-66-265510.1515/aiht-2015-66-265526110472Search in Google Scholar

21. Mumbrekar KD, Goutham HV, Vadhiraja BM, Bola Sadashiva SR. Polymorphisms in double strand break repair related genes influence radiosensitivity phenotype in lymphocytes from healthy individuals. DNA Repair 2016;40:27–34. doi: 10.1016/j.dnarep.2016.02.00610.1016/j.dnarep.2016.02.00626974709Search in Google Scholar

22. Sinitsky MY, Minina VI, Asanov MA, Yuzhalin AE, Ponasenko AV, Druzhinin VG. Association of DNA repair gene polymorphisms with genotoxic stress in underground coal miners. Mutagenesis 2017;32:501–9. doi: 10.1093/mutage/gex01810.1093/mutage/gex01828992182Search in Google Scholar

23. Doukali H, Ben Salah G, Ben Rhouma B, Hajjaji M, Jaouadi A, Belguith-Mahfouth N, Masmoudi ML, Ammar-Keskes L, Kamoun H. Cytogenetic monitoring of hospital staff exposed to ionizing radiation: optimize protocol considering DNA repair genes variability. Int J Radiat Biol 2017;93:1283–8. doi: 10.1080/09553002.2017.137736110.1080/09553002.2017.137736128880740Search in Google Scholar

24. Angelini S, Kumar R, Carbone F, Bermejo JL, Maffei F, Cantelli-Forti G, Hemminki K, Hrelia P. Inherited susceptibility to bleomycin-induced micronuclei: Correlating polymorphisms in GSTT1, GSTM1 and DNA repair genes with mutagen sensitivity. Mutat Res 2008;638:90–7. doi: 10.1016/j.mrfmmm.2007.09.00110.1016/j.mrfmmm.2007.09.00117953974Search in Google Scholar

25. Milić M, Rozgaj R, Kašuba V, Jazbec AM, Hrelia P, Angelini S. The influence of individual genome sensitivity in DNA damage repair assessment in chronic professional exposure to low doses of ionizing radiation. In: Chen CC, editor. Selected topics in DNA repair. London: IntechOpen; 2011 [displayed 27 March 2019]. Available at https://www.intechopen.com/books/selected-topics-in-dna-repair/the-influence-of-individual-genome-sensitivity-in-dna-damage-repair-assessment-in-chronic-profession10.5772/20814Search in Google Scholar

26. Fenech M, Knasmueller S, Bolognesi C, Bonassi S, Holland N, Migliore L, Palitti F, Natarajan AT, Kirsch-Volders M. Molecular mechanisms by which in vivo exposure to exogenous chemical genotoxic agents can lead to micronucleus formation in lymphocytes in vivo and ex vivo in humans. Mutat Res 2016;770:12–25. doi: 10.1016/j.mrrev.2016.04.00810.1016/j.mrrev.2016.04.00827894682Search in Google Scholar

27. Angelini S, Bermejo JL, Ravegnini G, Sammarini G, Hrelia P. Application of the lymphocyte Cytochinesis-Block Micronucleus Assay to population exposed to petroleum and its derivatives: results from a systematic review and meta-analysis. Mutat Res 2016;770:58–72. doi: 10.1016/j.mrrev.2016.03.00110.1016/j.mrrev.2016.03.00127894691Search in Google Scholar

28. Siama Z, Zosang-Zuali M, Vanlalruati A, Jagetia GC, Pau KS, Kumar NS. Chronic low dose exposure of hospital workers to ionizing radiation leads to incresed micronuclei frequency and reduced antioxidants in their peripheral blood lymphocytes. Int J Radiat Biol 2019. doi: 10.1080/09553002.2019.1571255. [Epub ahead of print]10.1080/09553002.2019.157125530668213Search in Google Scholar

29. Khisroon M, Khan A, Naseem M, Ali N, Khan S, Rasheed SB. Evaluation of DNA damage in lymphocytes of radiology personnel by comet assay. J Occup Health 2015;57:268–74. doi: 10.1539/joh.14-0154-OA10.1539/joh.14-0154-OA25752658Search in Google Scholar

30. Korzeneva IB, Kostuvk SV, Ershova LS, Osipov AN, Zhuraleva VF, Pankratova GV, Porokhovnik LN, Veiko NN. Human circulating plasma DNA significantly decreases while lymphocyte DNA damage increases under chronic occupational exposure to low-dose gamma-neutron and tritium β-radiation. Mutat Res 2015;779:1–15. doi: 10.1016/j.mrfmmm.2015.05.00410.1016/j.mrfmmm.2015.05.00426113293Search in Google Scholar

31. Gulati S, Yadav A, Kumar N, Kanupriya, Aggarwal NK, Kumar R, Gupta R. Effect of GSTM1 and GSTT1 polymorphisms on genetic damage in humans population exposed to radiation from mobile towers. Arch Environ Contam Toxicol 2016;70:615–25. doi: 10.1007/s00244-015-0195-y10.1007/s00244-015-0195-y26238667Search in Google Scholar

32. Gaetani S, Monaco F, Bracci M, Ciarapica V, Impollonia G, Valentino M, Tomasetti M, Santarelli L, Amati M. DNA damage response in workers exposed to low-dose ionising radiation. Occup Environ Med 2018;75:724–9. doi: 10.1136/oemed-2018-10509410.1136/oemed-2018-10509430087158Search in Google Scholar

33. Maffei F, Angelini S, Forti GC, Violante FS, Lodi V, Mattioli S, Hrelia P. Spectrum of chromosomal aberrations in peripheral lymphocyte of hospital workers occupationally exposed to low doses of ionizing radiation. Mutat Res 2004;547:91–9. doi: 10.1016/j.mrfmmm.2003.12.00310.1016/j.mrfmmm.2003.12.00315013703Search in Google Scholar

34. Tawn EJ, Curwen GB, Jonas P, Gillies M, Hodgson L, Cadwell KK. Chromosome aberrations determined by FISH in radiation workers from the Sellafield nuclear facility. Radiat Res 2015;184:296–303. doi: 10.1667/RR14125.110.1667/RR14125.126305405Search in Google Scholar

35. Djokovic-Davidovic J, Milovanovic A, Milovanovic J, Antic V, Gajic M. Analysis of chromosomal aberrations frequency, haematological parameters and received doses by nuclear medicine professionals. J BUON 2016;21:1307–15. PMID: 27837637Search in Google Scholar

36. Tawn EJ, Curwen GB, Riddel AE. Chromosome aberrations in workers occupationally exposed to tritium. J Radiol Prot 2018;38:N9–16. doi: 10.1088/1361-6498/aab0d010.1088/1361-6498/aab0d029589589Search in Google Scholar

37. Shirley B, Li Y, Knoll JHM, Rogan PK. Expedite radiation biodosimetry by automated dicentric chromosome identification (ADCI) and dose estimation. J Vis Exp 2017;127:56245. doi: 10.3791/5624510.3791/56245561968428892030Search in Google Scholar

38. Lenzi M, Cocchi V, Hrelia P. Flow cytometry vs optical microscopy in the evaluation of the genotoxic potential of xenobiotic compounds. Cytometry B Clin Cytom 2018;94:696–706. doi: 10.1002/cyto.b.2154610.1002/cyto.b.2154628745810Search in Google Scholar

Englisch, Slovenian
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Medizin, Vorklinische Medizin, Grundlagenmedizin, andere