Zitieren

1. N. K. Devendra, G. A. Everaldo, D. Raghunandan and Y. N. Seetharam, In vitro production of cucurbitacins from Trichosanthes cucumerina L. var. cucumerina, Adv. Life Sci. 2 (2012) 108–111; https://doi.org/10.5923/j.als.20120204.0510.5923/j.als.20120204.05Search in Google Scholar

2. M. Selvaraj and M. Mosses, Appraisal of bioactive phytoconstituents in leaf and pod samples of Citrullus colocynthis (L.) Schard (Family: Cucurbitaceae) by application of GC-MS, World J. harm. Pharm. Sci. 5 (2016) 1314–1326; https://doi.org/10.20959/wjpps201612-8284Search in Google Scholar

3. P. C. Stevenson, G. C. Kite, G. P. Lewis, F. Forest, S. P. Nyirenda, S. R. Belmain, G. W. Sileshi and N. C. Veitch, Distinct chemotypes of Tephrosia vogelii and implications for their use in pest control and soil enrichment, Phytochemistry78 (2012) 135–146; https://doi.org/10.1016/j.phytochem.2012.02.02510.1016/j.phytochem.2012.02.025Search in Google Scholar

4. Y. Chen, T. Yan, C. Gao, W. Cao and R. Huang, Natural products from the genus Tephrosia, Molecules19 (2014) 1432–1458; https://doi.org/10.3390/molecules1902143210.3390/molecules19021432Search in Google Scholar

5. R. Srinivasan, M. J. N. Chandrasekar, M. J. Nanjan and B. Suresh, Antioxidant activity of Caesalpinia digyna root, J. Ethnopharmacol. 113 (2007) 284–291; https://doi.org/10.1016/j.jep.2007.06.00610.1016/j.jep.2007.06.006Search in Google Scholar

6. H-S. Cho, W. Park, G-E. Hong, J-H. Kim, M-G. Ju and C-H. Lee, Antioxidant activity of Allium hookeri root extract and its effect on lipid stability of sulfur-fed pork patties, Korean J. Food Sci. Anim. Resour.35 (2015) 41–49; https://doi.org/10.5851/kosfa.2015.35.1.4110.5851/kosfa.2015.35.1.41Search in Google Scholar

7. L. Ali, T. S. Rizvi, M. Ahmad and F. Shaheen, New iridoid glycoside from Gratiola officinalis, J. Asian Nat. Prod. Res. 14 (2012) 1191–1195; https://doi.org/10.1080/10286020.2012.73429910.1080/10286020.2012.734299Search in Google Scholar

8. V. L. Singleton, R. Orthofer and R. M. Lamuela-Raventós, Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent, Methods Enzymol. 299 (1999) 152–178; https://doi.org/10.1016/S0076-6879(99)99017-110.1016/S0076-6879(99)99017-1Search in Google Scholar

9. P. Prieto, M. Pineda and M. Aguilar, Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E, Anal. Biochem. 269 (1999) 337–341; https://doi.org/10.1006/abio.1999.401910.1006/abio.1999.401910222007Search in Google Scholar

10. J. Hussain, L. Ali, A. L. Khan, N. Rehman, F. Jabeen, J. S. Kim and A. Al-Harrasi, Isolation and bioactivities of the flavonoids morin and morin-3-O-β-D-glucopyranoside from Acridocarpus orientalis – A wild Arabian medicinal plant, Molecules19 (2014) 17763–17772; https://doi.org/10.3390/molecules19111776310.3390/molecules191117763627133625421414Search in Google Scholar

11. E. U. Ezeji, E. A. Anyalogbu, T. N. Ezejiofor and J. U. Udensi, Determination of reduced glutathione and glutathione S-transferase of poultry birds exposed to permethrin insecticide, Am. J. Biochem.2 (2012) 21–24; https://doi.org/10.5923/j.ajb.20120203.0110.5923/j.ajb.20120203.01Search in Google Scholar

12. K. S. Nagarsekar, M. S. Nagarsenkar and S. R. Kulkarni, Antioxidant and antilipid peroxidation potential of supercritical fluid extract and ethanol extract of leaves of Vitex negundo Linn., Indian J. Pharm. Sci. 73 (2011) 422–429; https://doi.org/10.4103/0250-474X.95629Search in Google Scholar

13. A. Holley, S. Harding, A. Sasse, J. Miller and P. Larsen, Reduced glutathione peroxidase activity predicts increased cardiovascular risk following an acute coronary syndrome, Int. Cardiovasc. Forum J.6 (2016) 61–65; https://doi;10.17987/icfj.v6i0.24110.17987/icfj.v6i0.241Search in Google Scholar

eISSN:
1846-9558
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Pharmazie, andere