Uneingeschränkter Zugang

Reproduction of Meloidogyne arenaria race 2 on flue-cured tobacco with putative resistance derived from Nicotiana repanda


Chemical controls for root-knot nematodes are increasingly restricted due to environmental and human health concerns. Host resistance to these nematodes is key to flue-cured tobacco production in Virginia. Resistance to Meloidogyne incognita races 1 and 3, and race 1 of M. arenaria is imparted by the gene Rk1, which is widely available in commercial flue-cured tobacco. Rk2 imparts increased resistance to M. javanica when stacked with Rk1 and is becoming commercially available. The efficacy of Rk2 against M. arenaria race 2, which is increasingly prevalent in Virginia, is unclear. Greenhouse trials were conducted in 2017 to determine how potential resistance derived from N. repanda compares to the root-knot nematode resistance afforded by Rk1 and Rk2. Trials were arranged in a completely randomized block design and included an entry with traits derived from N. repanda, a susceptible entry and entries possessing Rk1 and/or Rk2. Data collected after 60 days included percent root galling, egg mass counts, and egg counts. Root galling and reproduction were significantly lower on the entry possessing traits derived from N. repanda relative to other entries, suggesting that the N. repanda species may hold a novel source of root-knot nematode resistance for commercial flue-cured tobacco cultivars.

Zeitrahmen der Veröffentlichung:
Volume Open
Fachgebiete der Zeitschrift:
Biologie, andere