Uneingeschränkter Zugang

Monitoring and remediation technologies of organochlorine pesticides in drainage water


Zitieren

1. Tomkins, B.A., Merriweather, R., Jenkins, R.A. & Bayne, C.K. (1992). J. Assoc. Off. Anal. Chem. Int. 75, 1091-1099.Search in Google Scholar

2. Colborn, T., Dumanoski, D. &Myers, J.P. (1996). Our Stolen Future. Dutton, NY, SA.Search in Google Scholar

3. Li, J., Zhang, G., Guo, L.L., Xu, W.H., Li, X., Dlee, C.S.L., Ding, A.J. & Wanf, T. (2007). Organochlorine pesticides in the atmosphere o Guangzhou and Hong Kong: regional sources and long-range atmospheric transport. Atmospheric Environ. 41, 3889-3903. DOI: 10.1016/j.atmosenv.2006.12.052.10.1016/j.atmosenv.2006.12.052Search in Google Scholar

4. Benitez, F.J., Acero, J.L. & Real, F.J. (2002). Degradation of carbofuran by using ozone, UV radiation and advanced oxidation processes. J. Hazard. Mat. 89, 51-65.10.1016/S0304-3894(01)00300-4Search in Google Scholar

5. Derbalah, A.S., Nakatani, N. & Sakugawa, H. (2004). Photocatalytic removal of fenitrothion in pure and natural waters by photo-Fenton reaction. Chemosphere 57, 635-644. DOI: 10.1016/j.Search in Google Scholar

6. Evgenidou, E., Konstantinou, I., Fytianos, K. & Poulios, I. (2007). Oxidation of tow organophosphorus insecticides by the photo-assisted Fenton reaction. Wat. Res. 41, 2015-2027. DOI: 10.1016/j.watres.2007.01.027.10.1016/j.watres.2007.01.027Search in Google Scholar

7. Derbalah, A.S. (2009). Chemical remediation of carbofuran insecticide in aquatic system by advanced oxidation processes. J. Agric. Res. Kafr Elsheikh Univ. 35 (1), 308-327.Search in Google Scholar

8. Derbalah, A.S.H. & Belal, E.B. (2008). Biodegradation kinetics of cymoxanil in Aquatic system. Chem. Ecol. 3, 169-180. DOI: 10.1080/02757540802032173.10.1080/02757540802032173Search in Google Scholar

9. Sangakkara, U.R. (2002). The Technology of Effective Microorganisms-Case Studies of Application’ Royal Agricultural College, Cirencester, UK Research.Search in Google Scholar

10. EM Technology (1998). Effective Microorganisms for a Sustainable Agriculture and Environment. From Link http://emtech.org/prod01.htmmSearch in Google Scholar

11. Xu, X., Yang, H., Li, O.,Yang, B., Frank, X.W. & Lee, S.C. (2007). Residues of organochlorine pesticides in near shore waters of Lai Zhou Bay and Jiao Zhou Bay, Shandong Peninsula, China. Chemosphere 68, 126-139. DOI: 10.1016/j. chemosphere.2006.12.021. Search in Google Scholar

12. Papadakis, E.N., Vryzas, Z. & Papadopoulou-Mourkidou, E. (2006). Rapid method for the determination of 16 organochlorine pesticides in sesame seeds by microwave-assisted extraction and analysis of extracts by gas chromatography-mass spectrometry. J. Chromat. A, 1127, 6-11.10.1016/j.chroma.2006.06.010Search in Google Scholar

13. Ezemonye, L.I., Ikpesu, T.O. & Tongo, I. (2008). Distribution of lindane in water, sediment, and fish from the Warri river of the Niger delta, Nigeria. Arh. High Rad. Toksikol. 59, 261-270. DOI: 10.2478/10004-1254-59-2008-1906.10.2478/10004-1254-59-2008-1906Search in Google Scholar

14. Abdel Megeed, A.A. & Elnakeeb, A. (2008). Bioremediation of dimethoate by effective microorganisms in contaminated water. Terrestrial Aquat. Environ. Toxicol. 2, 1-4.Search in Google Scholar

15. Derbalah, A.S., Massoud, A.H. & Belal, E.B. (2008). Biodegrability of famoxadone by various microbial isolates in aquatic system. Land Contamination & Reclama 16 (1), 13-23. DOI: 10.2462/09670513.876. 10.2462/09670513.876Search in Google Scholar

16. Bancroft, J.D. & Stevens, A. (1996). Theory and Practiceof Histological Techniques. (4th ed.). Churchill Livingstone. Edinburg, London, Melbourne and New York.Search in Google Scholar

17. Abd-Allah, S.W. & Hesham, M.G. (2003). Monitoring of pesticide residues in different sources of drinking water in some rural areas. Alex. J. Agric. Res. 48 (3), 187-199.Search in Google Scholar

18. Ashry, M.A., Bayoumi, O.C., El-Fakharany, I.I., Derbalah, A.S. & Ismail, A.A. (2006). Monitoring and removal of pesticidesresidues in drinking water collected from Kafr El-Sheikhgovernorate, Egypt. J. Agric. Res. Tanta Univ. 32 (3), 691-704.Search in Google Scholar

19. El-Sebae, A.H., Abou-Zeid, M.M. & Saleh, M.A. (1993). Status and environmental impact of toxaphene in the Third World a case study of African agriculture. Chemosphere 27, 2063-2072.10.1016/0045-6535(93)90401-PSearch in Google Scholar

20. Barakat, A.O. (2003). Persistent organic pollutants in smoke particles emitted during open burning of municipal solid wastes. Bull. Environ. Contamin. Toxicol. 70, 174-181. DOI: 10.1007/s00128-002-0172-9.10.1007/s00128-002-0172-912478441Search in Google Scholar

21. He, F., Zhao, D., Liu, J. & Roberts, C.B. (2007). Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Indian Engineer. Chem. Res. 46, 29-34. DOI: 10.1021/ie0610896.10.1021/ie0610896Search in Google Scholar

22. He, F. & Zhao, D. (2005). Preparation and characteriza- -for degradation of chlorinated hydrocarbons in water. Environ. Sci. Technol. 39, 3314-3320. DOI:10.1021/es048743y.10.1021/es048743ySearch in Google Scholar

23. Catastini, C., Sarakha, M., Mailhot, G. & Bolte, M. (2002). Iron (III) Aquacomplesxes as effective photocatalysis for the degradation of pesticides in homogenous aqueous solutions. Sci. Tot. Environ. 298, 219-228.10.1016/S0048-9697(02)00219-XSearch in Google Scholar

24. El-Morsi, T.M., Emara, M.M., Abd El Bary, H.M.H., Abd-El-Aziz, A. & Friesen K.J. (2002). Homogeneous degradation of 1,2<10 tetrachlorodecane in aqueous solutions using hydrogen peroxide, iron and UV light. Chemosphere 47, 343-348. DOI: 10.1016/S0045-6535(01)00305-8.10.1016/S0045-6535(01)00305-8Search in Google Scholar

25. Wang, Q. & Lemely, A.T. (2002). Oxidation of diazinon by anodic Fenton treatment. Wat. Res. 36, 3237-3244. DOI: 10.1016/S0043-1354(02)00041-6.10.1016/S0043-1354(02)00041-6Search in Google Scholar

26. Pare, B.P., Singh, S. & Jonnalagadda, B. (2008). Visible light induced heterogeneous advanced oxidation process to degrade pararosanilin dye in aqueous suspension of ZnO. Indian J. Chem. 4, 830-835.Search in Google Scholar

27. Wang, H., Xie, C., Zhang, W., Cai, Z., Cai, S., Yang, Z. & Gui, Y. (2007). Comparison of dye degradation efficiency using ZnO powders with various size scales. J. Hazard. Mat.141, 645-652. DOI: org/10.1016/j.jhazmat.2006.07.021.10.1016/j.jhazmat.2006.07.02116930825Search in Google Scholar

28. Valdés-Solís, T.P., Valle-Vigón, P., Álvarez, S., Marbán, G. & Fuertes, A.B. (2007 a). Encapsulation of nanosized catalysts in the hollow core of a mesoporous carbon capsule. J. Catal. 251, 239-243. DOI: 10.1016/j.jcat.2007.07.006.10.1016/j.jcat.2007.07.006Search in Google Scholar

29. Valdés-Solís, T.P., Valle-Vigón, P., Álvarez, S., Marbán, G. & Fuertes, A.B. (2007 b). Manganese ferrite nanoparticles synthesized through a nanocasting route as a highly active Fenton catalyst. Catal. Commun. 8, 2037-2042. DOI: 10.1016/j. catcom.2007.03.030.Search in Google Scholar

32. Lines, M.G. (2008). Nanomaterials for practical functional uses. J. Alloys Compd. 449, 242-245. DOI: 10.1016/j.Search in Google Scholar

30. Mamalis, A.G. (2007). Recent advances in nanotechnology. J. Mat. Process. Technol. 181, 52-58. DOI:org/10.1016/j. jmatprotec.2006.03.052.10.1016/j.jmatprotec.2006.03.052Search in Google Scholar

31. Miyazaki, K. & Islam, N. (2007). Nanotechnology systems of innovation - an analysis of industry and academia research activities. Technovation 27, 661-675. DOI: 10.1016/j. technovation.2007.05.009.Search in Google Scholar

33. Yuan, G. & Theng, B.K.G. (2008). Nanopaticles in the soil environment. Elements 4, 395-399. DOI:10.2113/gsSearch in Google Scholar

34. Bell, A.T. (2003). The impact of nanoscience on heterogeneous catalysis. Sci. 299, 1688-1691. DOI: 10.1126/ science.1083671. 10.1126/science.108367112637733Search in Google Scholar

35. Feng, J., Hu, X. & Yue, P.L. (2004 a). Novel bentonite clay-based Fe-nanocomposite as a heterogeneous catalyst for photo-Fenton discoloration and mineralization of Orange II. Environ. Sci. Technol. 38, 269-275. DOI: 10.1021/es034515c.10.1021/es034515c14740746Search in Google Scholar

36. Feng, J., Hu, X. & Yue, P.L. (2004 b). Discoloration and mineralization of Orange II using different heterogeneous catalysts containing Fe: a comparative study. Environ. Sci. Technol. 38, 5773-5778. DOI: 10.1021/es049811j.10.1021/es049811j15575299Search in Google Scholar

37. Zelmanov, G., Semiat, R. (2008). Iron(3) oxide-based nanoparticles as catalysts in advanced organic aqueous oxidation. Wat. Res. 42, 492-498. DOI: 10.1016/j.watres.2007.07.045.\10.1016/j.watres.2007.07.04517714754Search in Google Scholar

38. Nurmi, J., Tratnyek, P.G., Sarathy, V., Baer, D.R., Amonette, J.E., Pecher, K., Wang, C., Linehan, J.C., Matson, D.W., Penn, R.L. & Driessen, M.D. (2005). Characterization and properties of metallic iron nanoparticle: spectroscopy, electrochemistry, and kinetics. Environ. Sci. Technol. 39, 1221-1230. DOI: 10.1021/es049190u.10.1021/es049190u15787360Search in Google Scholar

39. Liu, W.T. (2006). Nanoparticles and their biological and environmental applications. J. Biosci. Bioeng. 102, 1-7. DOI: 10.1263/jbb.102.110.1263/jbb.102.116952829Search in Google Scholar

40. Higa, T. (1995). What is EM Technology. College of Agriculture, University of Ryukyus, Okinawa, Japan.Search in Google Scholar

41. EM Trading (2000). Effective Microorganisms (EM) from Sustainable Community Development. From EM Technology Product Link http://www.emtrading.com.htmlSearch in Google Scholar

42. Diver, S. (2001). Nature Farming and Effective Microorganisms’, Rhizosphere II: Publications. from Steve Diver Link http://ncatark.uark.edu/~steved/Nature-Farm-EM.htmlSearch in Google Scholar

43. Quik, J.T.K., Velzeboer, I., Wouterse, M., Koelmans, A.A. & Van de Meent, D. (2014). Heteroaggregation and Sedimentation Rates for Nanomaterials in Natural Waters. Wat. Res. 48, 269-279. DOI: 10.1016/j.watres.2013.09.036.10.1016/j.watres.2013.09.03624119930Search in Google Scholar

44. El-Safty, S.A., Hoa, N.D. & Shenashen M.A. (2012). Topical Developments of Nanoporous Membrane Filters for Ultrafine Noble Metal Nanoparticles. Eur. J. Inorg. Chem. 5439-5450. DOI: 10.1002/ejic.201200629. 10.1002/ejic.201200629Search in Google Scholar

eISSN:
1899-4741
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Industrielle Chemie, Biotechnologie, Chemieingenieurwesen, Verfahrenstechnik