Uneingeschränkter Zugang

Overview of Prebiotics and Probiotics: Focus on Performance, Gut Health and Immunity – A Review


Zitieren

Aachary A.A., Prapulla S.G. (2008). Corncob-induced endo-1,4-β-d-xylanase of Aspergillus oryzae MTCC 5154: production and characterization of xylobiose from glucuronoxylan. J. Agric. Food Chem., 56: 3981–3988.Search in Google Scholar

Abudabos A.M., Al-Batshan H.A., Murshed M.A. (2015). Effects of prebiotics and probiotics on the performance and bacterial colonization of broiler chickens. S. Afr. J. Anim. Sci., 45: 419–428.Search in Google Scholar

Ajuwon K.M. (2015). Toward a better understanding of mechanisms of probiotics and prebiotics action in poultry species. J. Appl. Poult. Res., 25: 277–283.Search in Google Scholar

Alloui M.N., Szczurek W., Świątkiewicz S. (2013). The usefulness of prebiotics and probiotics in modern poultry nutrition – a review. Ann. Anim. Sci., 13: 17–32.Search in Google Scholar

Amat C., Planas J.M., Moreto M. (1996). Kinetics of hexose uptake by the small and large intestine of the chicken. Am. J. Physiol., 271: 1085–1089.Search in Google Scholar

Apajalahti J., Kettunen A., Graham H. (2004). Characteristics of the gastrointestinal microbial communities, with special reference to the chicken. World's Poult. Sci. J., 60: 223.Search in Google Scholar

Apata D.F. (2008). Growth performance, nutrient digestibility and immune response of broiler chicks fed diets supplemented with a culture of Lactobacillus bulgaricus. J. Sci. Food Agr., 88: 1253–1258.10.1002/jsfa.3214Open DOISearch in Google Scholar

Arvola T., Laiho K., Torkkeli S., Mykkanen H., Salminen S., Maunula L., Isolauri E. (1999). Prophylactic Lactobacillus GG reduces antibiotic-associated diarrhea in children with respiratory infections: A randomized study. Pediatrics, 104: 164.Search in Google Scholar

Awad W.A., Ghareeb K., Abdel-Raheem S., Bohm J. (2009). Effects of dietary inclusion of probiotic and synbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chickens. Poultry Sci., 88: 49–56.10.3382/ps.2008-0024419096056Open DOISearch in Google Scholar

Awad W.A., Ghareeb K., Abdel-Raheem S., Bohm J. (2010). Effect of addition of a probiotic micro-organism to broiler diet on intestinal mucosal architecture and electrophysiological parameters. J. Anim. Physiol. Anim. Nutr., 94: 486–494.Search in Google Scholar

Bai S.P., Wu A.M., Ding X.M., Lei Y., Bai J., Zhang K.Y., Chio J.S. (2013). Effects of probiotic-supplemented diets on growth performance and intestinal immune characteristics of broiler chickens. Poultry Sci., 92: 663–670.10.3382/ps.2012-0281323436517Open DOISearch in Google Scholar

Baurhoo B., Letellier A., Zhao X., Ruiz-Feria C.A. (2007). Cecal populations of lactobacilli and bifidobacteria and Escherichia coli populations after in vivo Escherichia coli challenge in birds fed diets with purified lignin or mannanoligosaccharides. Poultry Sci., 86: 2509–2516.10.3382/ps.2007-0013618029796Open DOISearch in Google Scholar

Baurhoo B., Ferket P.R., Zhao X. (2009). Effects of diets containing different concentrations of mannanoligosaccharide or antibiotics on growth performance, intestinal development, cecal and litter microbial populations, and carcass parameters of broilers. Poultry Sci., 88: 2262–2272.10.3382/ps.2008-0056219834074Open DOISearch in Google Scholar

Bednarczyk M., Stadnicka K., Kozłowska I., Abiuso C., Tavaniello S., Dankowiakowska A., Sławińska A., Maiorano G. (2016). Influence of different prebiotics and mode of their administration on broiler chicken performance. Animal, First View: 1–9.Search in Google Scholar

Bermudez-Brito M., Plaza-Díaz J., Muñoz-Quezada S., Gómez-Llorente C., Gil A. (2012). Probiotic mechanisms of action. Ann. Nutr. Metabol., 61: 160–174.10.1159/00034207923037511Open DOISearch in Google Scholar

Biggs P., Parsons C.M., Fahey G.C. (2007). The effects of several oligosaccharides on growth performance, nutrient digestibilities, and cecal microbial populations in young chicks. Poultry Sci., 86: 2327–2336.10.3382/ps.2007-0042717954582Open DOISearch in Google Scholar

Bozkurt M., Kucukyilmaz K., Catli A.U., Cinar M., Bintas E., Coven F. (2012). Performance, egg quality, and immune response of laying hens fed diets supplemented with mannanoligosaccharide or an essential oil mixture under moderate and hot environmental conditions. Poultry Sci., 91: 1379–1386.10.3382/ps.2011-0202322582296Open DOISearch in Google Scholar

Bozkurt M., Aysul N., Kucukyilmaz K., Aypak S., Ege G., Catli A.U., Aksit H., Coven F., Seyrek K., Cinar M. (2014). Efficacy of in-feed preparations of an anticoccidial, multienzyme, prebiotic, probiotic, and herbal essential oil mixture in healthy and Eimeria spp.-infected broilers. Poultry Sci., 93: 389–399.10.3382/ps.2013-0336824570461Open DOISearch in Google Scholar

Braat H., Van Den Brande J., Van Tol E., Hommes D., Peppelenbosch M., Van Deventer S. (2004). Lactobacillus rhamnosus induces peripheral hyporesponsiveness in stimulated CD4+ T cells via modulation of dendritic cell function. Am. J. Clinic. Nutr., 80: 1618–1625.Search in Google Scholar

Brisbin J.T., Zhou H., Gong J., Sabour P., Akbari M.R., Haghighi H.R., Yu H., Clarke A., Sarson A.J., Sharif S. (2008). Gene expression profiling of chicken lymphoid cells after treatment with lactobacillus acidophilus cellular components. Develop. Comp. Immunol., 32: 563–574.Search in Google Scholar

Brisbin J.T., Gong J., Orouji S., Esufali J., Mallick A.I., Parvizi P., Shewen P.E., Sharif S. (2011). Oral treatment of chickens with lactobacilli influences elicitation of immune responses. Clinic. Vacc. Immunol., 18: 1447–1455.Search in Google Scholar

Brzóska F., Śliwiński B., Stecka K. (2012). Effect of Lactococcus lactis vs. Lactobacillus spp. bacteria on chicken body weight, mortality, feed conversion and carcass quality. Ann. Anim. Sci., 12: 549–559.Search in Google Scholar

Callaway T.R., Edrington T.S., Anderson R.C., Harvey R.B., Genovese K.J., Kennedy C.N., Venn D.W., Nisbet D.J. (2008). Probiotics, prebiotics and competitive exclusion for prophylaxis against bacterial disease. Anim. Health Res. Rev., 9: 217–225.10.1017/S146625230800154019102792Open DOISearch in Google Scholar

Cao B.H., Karasawa Y., Guo Y.M. (2005). Effects of green tea polyphenols and fructo-oligosaccharides in semi-purified diets on broilers' performance and caecal microflora and their metabolites. Asian Australas. J. Anim. Sci., 18: 85–89.Search in Google Scholar

Carey C.M., Kostrzynska M., Ojha S., Thompson S. (2008). The effect of probiotics and organic acids on Shiga-toxin 2 gene expression in enterohemorrhagic Escherichia coli o157:H7. J. Microbiol. Methods., 73: 125–132.Search in Google Scholar

Castellazzi A.M., Valsecchi C., Montagna L., Malfa P., Ciprandi G., Avanzini M.A., Marseglia G.L. (2007). In vitro activation of mononuclear cells by two probiotics: Lactobacillus paracasei I 1688, Lactobacillus salivarius I 1794, and their mixture (PSMIX). Immunol. Invest., 36: 413–421.Search in Google Scholar

Chapman M., Grahn M., Boyle M., Hutton M., Rogers J., Williams N. (1994). Butyrate oxidation is impaired in the colonic mucosa of sufferers of quiescent ulcerative colitis. Gut, 35: 73–76.Search in Google Scholar

Cheled-Shoval S.L., Amit-Romach E., Barbakov M., Uni Z. (2011). The effect of in ovo administration of mannan oligosaccharide on small intestine development during the pre- and posthatch periods in chickens. Poultry Sci., 90: 2301–2310.10.3382/ps.2011-0148821934014Open DOISearch in Google Scholar

Corr S.C., Li Y., Riedel C.U., O’Toole P.W., Hill C., Gahan C.G.M. (2007). Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc. Nat. Acad. Sci., 104: 7617–7621.10.1073/pnas.0700440104186347217456596Open DOISearch in Google Scholar

Cox N., Bailey J., Blankenship L., Gildersleeve R. (1992). Research Note: In ovo administration of a competitive exclusion culture treatment to broiler embryos. Poultry Sci. 71: 1781–1784.Search in Google Scholar

Cummings J.H., Macfarlane G.T., Englyst H.N. (2001). Prebiotic digestion and fermentation. Am. J. Clinic. Nutr., 73: 415–420.Search in Google Scholar

Dalloul R.A., Lillehoj H.S., Shellem T.A., Doerr J.A. (2003). Enhanced mucosal immunity against Eimeria acervulina in broilers fed a Lactobacillus-based probiotic. Poultry Sci., 82: 62–66.10.1093/ps/82.1.6212580246Open DOISearch in Google Scholar

Dalloul R.A., Lillehoj H.S., Tamim N.M., Shellem T.A., Doerr J.A. (2005). Induction of local protective immunity to Eimeria acervulina by a Lactobacillus-based probiotic. Comp. Immunol. Microbiol. Infect. Dis., 28: 351–361.10.1016/j.cimid.2005.09.00116293311Open DOISearch in Google Scholar

de Oliveira J.E., van der Hoeven-Hangoor E., van de Linde I.B., Montijn R.C. van der Vossen J.M.B.M. (2014). In ovo inoculation of chicken embryos with probiotic bacteria and its effect on posthatch Salmonella susceptibility. Poultry Sci., 93: 818–829.10.3382/ps.2013-0340924706958Open DOISearch in Google Scholar

Ding W., Wang H., Griffiths M.W. (2005). Probiotics down-regulate flaA sigma28 promoter in Campylobacter jejuni. J. Food Prot., 68: 2295–2300.Search in Google Scholar

Ding G., Chang Y., Zhao L., Zhou Z., Ren L., Meng Q. (2014). Effect of Saccharomyces cerevisiae on alfalfa nutrient degradation characteristics and rumen microbial populations of steers fed diets with different concentrate-to-forage ratios. J. Anim. Sci. Biotechnol., 5: 24.Search in Google Scholar

Duggan C., Gannon J., Walker W.A. (2002). Protective nutrients and functional foods for the gastrointestinal tract. Am. J. Clinic. Nutr., 75: 789–808.Search in Google Scholar

Duncan S.H., Louis P., Flint H.J. (2004). Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl. Environ. Microbiol., 70: 5810–5817.10.1128/AEM.70.10.5810-5817.200452211315466518Open DOISearch in Google Scholar

Fayol-Messaoudi D., Berger C.N., Coconnier-Polter M.-H., Liévin-Le Moal V., Servin A.L. (2005). pH-, lactic acid-, and non-lactic acid-dependent activities of probiotic lactobacilli against Salmonella enterica Serovar Typhimurium. Appl. Environ. Microbiol., 71: 6008–6013.Search in Google Scholar

Fernandez F., Hinton M., Van Gils B. (2002). Dietary mannan-oligosaccharides and their effect on chicken caecal microflora in relation to Salmonella enteritidis colonization. Avian Pathol., 31: 49–58.Search in Google Scholar

Ferreira C.L., Salminen S., Lukasz G., Brizuela M.A., Sanchez L., Carneiro H., Bonnet M. (2011). Terminology concepts of probiotics and prebiotics and their role in human and animal health. Rev. Salud Anim., 33: 137–146.Search in Google Scholar

Foligné B., Dewulf J., Breton J., Claisse O., Lonvaud-Funel A., Pot B. (2010). Probiotic properties of non-conventional lactic acid bacteria: Immunomodulation by Oenococcus oeni. Internat. J. Food Microbiol., 140: 136–145.10.1016/j.ijfoodmicro.2010.04.00720452078Open DOISearch in Google Scholar

Fuller R. (1989). Probiotics in man and animals. J. Appl. Bacteriol., 66: 365–378.Search in Google Scholar

Gabler N., Spurlock M. (2008). Integrating the immune system with the regulation of growth and efficiency. J. Anim. Sci., 86: E64–E74.Search in Google Scholar

Gao J., Zhang H.J., Yu S.H., Wu S.G., Yoon I., Quigley J., Gao Y.P., Qi G.H. (2008). Effects of yeast culture in broiler diets on performance and immunomodulatory functions. Poultry Sci., 87: 1377–1384.Search in Google Scholar

Geier M.S., Torok V.A., Allison G.E., Ophel-Keller K., Hughes R.J. (2009). Indigestible carbohydrates alter the intestinal microbiota but do not influence the performance of broiler chickens. J. Appl. Microbiol., 106: 1540–1548.Search in Google Scholar

Gibson G.R., Roberfroid M.B. (1995). Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr., 125: 1401–1412.Search in Google Scholar

Haghighi H.R., Gong J., Gyles C.L., Hayes M.A., Sanei B., Parvizi P., Gisavi H., Chambers J.R., Sharif S. (2005). Modulation of antibody-mediated immune response by probiotics in chickens. Clin. Diagn. Lab. Immun., 12: 1387–1392.Search in Google Scholar

Haghighi H.R., Gong J., Gyles C.L., Hayes M.A., Zhou H., Sanei B., Chambers J.R., Sharif S. (2006). Probiotics stimulate production of natural antibodies in chickens. Clin. Vaccine Immunol., 13: 975–980.10.1128/CVI.00161-06156356916960107Open DOISearch in Google Scholar

Haghighi H.R., Abdul-Careem M.F., Dara R.A., Chambers J.R., Sharif S. (2008). Cytokine gene expression in chicken cecal tonsils following treatment with probiotics and Salmonella infection. Vet. Microbiol., 126: 225–233.Search in Google Scholar

Hajati H., Rezaei M. (2010). The application of prebiotics in poultry production. Int. J. Poult. Sci., 9: 298–304.Search in Google Scholar

Hanning I., Clement A., Owens C., Park S.H., Pendleton S., Scott E.E., Almeida G., Gonzalez Gil F., Ricke S.C. (2012). Assessment of production performance in 2 breeds of broilers fed prebiotics as feed additives. Poultry Sci., 91: 3295–3299.10.3382/ps.2012-0255723155043Open DOISearch in Google Scholar

Helwig U., Lammers K.M., Rizzello F., Brigidi P., Rohleder V., Caramelli E., Gionchetti P., Schrezenmeir J., Foelsch U.R., Schreiber S., Campieri M. (2006). Lactobacilli, Bifidobacteria and E. coli nissle induce pro- and anti-inflammatory cytokines in peripheral blood mononuclear cells. World J. Gastroenterol., 12: 5978–5986.Search in Google Scholar

Higgins J.P., Higgins S.E., Wolfenden A.D., Henderson S.N., Torres-Rodriguez A., Vicente J.L., Hargis B.M., Tellez G. (2010). Effect of lactic acid bacteria probiotic culture treatment timing on Salmonella Enteritidis in neonatal broilers. Poultry Sci., 89: 243–247.Search in Google Scholar

Hofacre C.L., Beacorn T., Collett S., Mathis G. (2003). Using competitive exclusion, mannan-oligosaccharide and other intestinal products to control necrotic enteritis. J. Appl. Poult. Res., 12: 60–64.Search in Google Scholar

Huang M.K., Choi Y.J., Houde R., Lee J.W., Lee B., Zhao X. (2004). Effects of lactobacilli and an acidophilic fungus on the production performance and immune responses in broiler chickens. Poultry Sci., 83: 788–795.10.1093/ps/83.5.78815141837Open DOISearch in Google Scholar

Huang Q., Wei Y., Lv Y., Wang Y., Hu T. (2015). Effect of dietary inulin supplements on growth performance and intestinal immunological parameters of broiler chickens. Livest. Sci., 180: 172–176.Search in Google Scholar

Huyghebaert G., Ducatelle R., Van Immerseel F. (2011). An update on alternatives to antimicrobial growth promoters for broilers. Vet. J., 187: 182–188.Search in Google Scholar

Ichikawa H., Shineha R., Satomi S., Sakata T. (2002). Gastric or rectal instillation of shortchain fatty acids stimulates epithelial cell proliferation of small and large intestine in rats. Digest. Dis. Sci., 47: 1141–1146.10.1023/A:1015014829605Open DOISearch in Google Scholar

Iji P.A., Tivey D.R. (1998). Natural and synthetic oligosaccharides in broiler chicken diets. World's Poult. Sci. J., 54: 129–143.Search in Google Scholar

Janardhana V., Broadway M.M., Bruce M.P., Lowenthal J.W., Geier M.S., Hughes R.J., Bean A.G. (2009 a). Prebiotics modulate immune responses in the gut-associated lymphoid tissue of chickens. J. Nutr., 139: 1404–1409.10.3945/jn.109.10500719474157Search in Google Scholar

Janardhana V., Broadway M.M., Bruce M.P., Lowenthal J.W., Geier M.S., Hughes R.J., Bean A.G.D. (2009 b). Prebiotics modulate immune responses in the gut-associated lymphoid tissue of chickens. J. Nutr., 139: 1404–1409.10.3945/jn.109.105007Search in Google Scholar

Janczyk P., Halle B., Souffrant W.B. (2009). Microbial community composition of the crop and ceca contents of laying hens fed diets supplemented with Chlorella vulgaris. Poultry Sci., 88: 2324–2332.10.3382/ps.2009-0025019834082Open DOISearch in Google Scholar

Jayaraman S., Thangavel G., Kurian H., Mani R., Mukkalil R., Chirakkal H. (2013). Bacillus subtilis PB6 improves intestinal health of broiler chickens challenged with Clostridium perfringens-induced necrotic enteritis. Poultry Sci., 92: 370–374.10.3382/ps.2012-0252823300303Open DOISearch in Google Scholar

Józefiak D., Kaczmarek S., Rutkowski A. (2008). A note on the effects of selected prebiotics on the performance and ileal microbiota of broiler chickens. J. Anim. Feed Sci. Technol., 17: 392–397.10.22358/jafs/66633/2008Open DOISearch in Google Scholar

Jung S.J., Houde R., Baurhoo B., Zhao X., Lee B.H. (2008). Effects of galacto-oligosaccharides and a Bifidobacteria lactis-based probiotic strain on the growth performance and fecal microflora of broiler chickens. Poultry Sci., 87: 1694–1699.Search in Google Scholar

Kang S.J., Park Y.I., So B., Kang H.G. (2014). Sodium butyrate efficiently converts fully reprogrammed induced pluripotent stem cells from mouse partially reprogrammed cells. Cell Reprogramm., 16: 345–354.Search in Google Scholar

Kim G.B., Seo Y.M., Kim C.H., Paik I.K. (2011). Effect of dietary prebiotic supplementation on the performance, intestinal microflora, and immune response of broilers. Poultry Sci., 90: 75–82.10.3382/ps.2010-0073221177446Open DOISearch in Google Scholar

Kizerwetter-Swida M., Binek M. (2009). Protective effect of potentially probiotic Lactobacillus strain on infection with pathogenic bacteria in chickens. Polish J. Vet. Sci., 12: 15–20.Search in Google Scholar

Klose V., Mohnl M., Plail R., Schatzmayr G., Loibner A.P. (2006). Development of a competitive exclusion product for poultry meeting the regulatory requirements for registration in the european union. Mol. Nutr. Food Res., 50: 563–5671.10.1002/mnfr.20050016616676374Open DOISearch in Google Scholar

Kurtoglu V., Kurtoglu F., Seker E., Coskun B., Balevi T., Polat E.S. (2004). Effect of probiotic supplementation on laying hen diets on yield performance and serum and egg yolk cholesterol. Food Addit. Contam., 21: 817–823.10.1080/0265203031000163953015666974Open DOISearch in Google Scholar

Lan Y., Verstegen M., Tamminga S., Williams B. (2005). The role of the commensal gut microbial community in broiler chickens. World’s Poultry Sci. J., 61: 95–104.Search in Google Scholar

Lavermicocca P., Valerio F., Lonigro S.L., Di Leo A., Visconti A. (2008). Antagonistic activity of potential probiotic lactobacilli against the ureolytic pathogen Yersinia enterocolitica. Curr. Microbiol., 56: 175–18110.1007/s00284-007-9069-518074177Open DOISearch in Google Scholar

Lee K.W., Lee S.H., Lillehoj H.S., Li G.X., Jang S.I., Babu U.S., Park M.S., Kim D.K., Lillehoj E.P., Neumann A.P., Rehberger T.G., Siragusa G.R. (2010 a). Effects of direct-fed microbials on growth performance, gut morphometry, and immune characteristics in broiler chickens. Poultry Sci., 89: 203–216.10.2141/jpsa.009025Open DOISearch in Google Scholar

Lee K.W., Lillehoj H.S., Jang S.I., Li G., Lee S.H., Lillehoj E.P., Siragusa G.R. (2010 b). Effect of Bacillus-based direct-fed microbials on Eimeria maxima infection in broiler chickens. Comp. Immunol. Microbiol. Infect. Dis., 33: e105–110.10.1016/j.cimid.2010.06.00120621358Open DOISearch in Google Scholar

Li L., Xu C.L., Ji C., Ma Q., Hao K., Jin Z.Y., Li K. (2006). Effects of a dried Bacillus subtilis culture on egg quality. Poultry Sci., 85: 364–368.Search in Google Scholar

Liu X., Yan H., Lv L., Xu Q., Yin C., Zhang K., Wang P., Hu J. (2012). Growth performance and meat quality of broiler chickens supplemented with Bacillus licheniformis in drinking water. Asian-Australas. J. Anim. Sci., 25: 682–689.Search in Google Scholar

Lu H., Su S., Ajuwon K.M. (2012). Butyrate supplementation to gestating sows and piglets induces muscle and adipose tissue oxidative genes and improves growth performance. J. Anim. Sci., 90, Suppl. 4: 430–432.10.2527/jas.5381723365400Open DOISearch in Google Scholar

Macfarlane G.T., Steed H., Macfarlane S. (2008). Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J. Appl. Microbiol., 104: 305–344.Search in Google Scholar

Madej J.P., Stefaniak T., Bednarczyk M. (2015). Effect of in ovo-delivered prebiotics and synbiotics on lymphoid-organs’ morphology in chickens. Poultry Sci., 94: 1209–1219.Search in Google Scholar

Matis G., Kulcsar A., Turowski V., Febel H., Neogrady Z., Huber K. (2015). Effects of oral butyrate application on insulin signaling in various tissues of chickens. Domest. Anim. Endocrin., 50: 26–31.Search in Google Scholar

Mead G.C. (2000). Prospects for ‘competitive exclusion’ treatment to control salmonellas and other foodborne pathogens in poultry. Vet. J., 159: 111–123.Search in Google Scholar

Meimandipour A., Shuhaimi M., Soleimani A.F., Azhar K., Hair-Bejo M., Kabeir B.M., Javanmard A., Muhammad Anas O., Yazid A.M. (2010). Selected microbial groups and short-chain fatty acids profile in a simulated chicken cecum supplemented with two strains of lactobacillus. Poultry Sci., 89: 470–476.Search in Google Scholar

Miettinen M., Matikainen S., Vuopio-Varkila J., Pirhonen J., Varkila K., Kurimoto M., Julkunen I. (1998). Lactobacilli and streptococci induce interleukin-12 (IL-12), IL-18, and gamma interferon production in human peripheral blood mononuclear cells. Infect. Immunol., 66: 6058–6062.Search in Google Scholar

Mookiah S., Sieo C.C., Ramasamy K., Abdullah N., Ho Y.W. (2014). Effects of dietary prebiotics, probiotic and synbiotics on performance, caecal bacterial populations and caecal fermentation concentrations of broiler chickens. J. Sci. Food Agric., 94: 341–348.10.1002/jsfa.636524037967Open DOISearch in Google Scholar

Ng S.C., Hart A.L., Kamm M.A., Stagg A.J., Knight S.C. (2009). Mechanisms of action of probiotics: Recent advances. Inflamm. Bowel Dis., 15: 300–310.10.1002/ibd.2060218626975Open DOISearch in Google Scholar

Novak M., Vetvicka V. (2008). Beta-glucans, history, and the present: Immunomodulatory aspects and mechanisms of action. J. Immunotoxicol., 5: 47–57.Search in Google Scholar

Nurmi E., Rantala M. (1973). New aspects of Salmonella infection in broiler production. Nature, 241: 210–211.Search in Google Scholar

Patterson J.A., Burkholder K.M. (2003). Application of prebiotics and probiotics in poultry production. Poultry Sci., 82: 627–631.10.1093/ps/82.4.62712710484Open DOISearch in Google Scholar

Pedroso A.A., Batal A.B., Lee M.D. (2016). Effect of in ovo administration of an adult-derived microbiota on establishment of the intestinal microbiome in chickens. Am. J. Vet. Res., 77: 514–526.Search in Google Scholar

Pelicano E., Souza P.D., Souza H.D., Oba A., Norkus E., Kodawara L., Lima T.D. (2003). Effect of different probiotics on broiler carcass and meat quality. Revista Bras. Ciência Avícola, 5: 207–214.Search in Google Scholar

Pilarski R., Bednarczyk M., Lisowski M., Rutkowski A., Bernacki Z., Wardeńska M., Gulewicz K. (2005). Assessment of the effect of α-galactosides injected during embryogenesis on selected chicken traits. Folia Biol., 53: 13–20.Search in Google Scholar

Pirgozliev V., Bravo D., Rose S.P. (2014). Rearing conditions influence nutrient availability of plant extracts supplemented diets when fed to broiler chickens. J. Anim. Physiol. Anim. Nutr., 98: 667–671.Search in Google Scholar

Pourabedin M., Xu Z., Baurhoo B., Chevaux E., Zhao X. (2014). Effects of mannan oligosaccharide and virginiamycin on the cecal microbial community and intestinal morphology of chickens raised under suboptimal conditions. Can. J. Microbiol., 60: 255–266.10.1139/cjm-2013-089924766220Open DOISearch in Google Scholar

Qaisrani S.N., Van Krimpen M.M., Kwakkel R.P., Verstegen M.W.A., Hendriks W.H. (2015). Diet structure, butyric acid, and fermentable carbohydrates influence growth performance, gut morphology, and cecal fermentation characteristics in broilers. Poultry Sci., 94: 2152–2164.Search in Google Scholar

Rebolé A., Ortiz L.T., Rodríguez M.L., Alzueta C., Treviño J., Velasco S. (2010). Effects of inulin and enzyme complex, individually or in combination, on growth performance, intestinal microflora, cecal fermentation characteristics, and jejunal histomorphology in broiler chickens fed a wheat- and barley-based diet. Poultry Sci., 89: 276–286.Search in Google Scholar

Ribeiro A., Vogt L., Canal C., Cardoso M., Labres R., Streck A., Bessa M. (2007). Effects of prebiotics and probiotics on the colonization and immune response of broiler chickens challenged with Salmonella enteritidis. Rev. Bras. Ciência Avícola, 9: 193–200.Search in Google Scholar

Rinttilä T., Apajalahti J. (2013). Intestinal microbiota and metabolites – Implications for broiler chicken health and performance. J. Appl. Poult. Res., 22: 647–658.Search in Google Scholar

Roberfroid M., Gibson G.R., Hoyles L., Mc Cartney A.L., Rastall R., Rowland I., Wolvers D., Watzi B., Szajewska H., Stahl B., Guarner F., Respondek F., Whelan K., Coxam V., Davicco M.J., Leotoing L., Wittrant Y., Delzenne N.M., Neyrinck A.M., Meheust A. (2015). Prebiotic effects: metabolic and health benefits. Brit. J. Nutr., 104: S1–63.Search in Google Scholar

Roto S.M., Rubinelli P.M., Ricke S.C. (2015). An introduction to the avian gut microbiota and the effects of yeast based prebiotic-type compounds as potential feed additives. Front. Vet. Sci., 2: 28.Search in Google Scholar

Salmanzadeh M. (2012). The effects of in-ovo injection of glucose on hatchability, hatching weight and subsequent performance of newly-hatched chicks. Rev. Bras. Ciência Avícola, 14: 137–140.Search in Google Scholar

Samanya M., Yamauchi K.E. (2002). Histological alterations of intestinal villi in chickens fed dried Bacillus subtilis var. natto. Comp. Biochem. Physiol. A. Mol. Integr. Physiol., 133: 95–104.Search in Google Scholar

Sanders M.E., Huisin’t Veld J. (1999). Bringing a probiotic-containing functional food to the market: Microbiological, product, regulatory and labeling issues. Anton. Leeuw., 76: 293–315.Search in Google Scholar

Santin E., Maiorka A., Macari M., Grecco M., Sanchez J., Okada T., Myasaka A. (2001). Performance and intestinal mucosa development of broiler chickens fed diets containing Saccharomyces cerevisiae cell wall. J. Appl. Poult. Res., 10: 236–244.Search in Google Scholar

Santos F.B., Sheldon B.W., Santos A.A.Jr., Ferket P.R. (2008). Influence of housing system, grain type, and particle size on salmonella colonization and shedding of broilers fed triticale or cornsoybean meal diets. Poultry Sci., 87: 405–420.Search in Google Scholar

Seifert S., Watzl B. (2007). Inulin and oligofructose: Review of experimental data on immune modulation. J. Nutr., 137: 2563s–2567s.Search in Google Scholar

Shang H.M., Hu T.M., Lu Y.J., Wu H.X. (2010). Effects of inulin on performance, egg quality, gut microflora and serum and yolk cholesterol in laying hens. Brit. Poultry Sci., 51: 791–796.10.1080/00071668.2010.53100521161786Open DOISearch in Google Scholar

Sherman P.M., Ossa J.C., Johnson-Henry K. (2009). Unraveling mechanisms of action of probiotics. Nutr. Clin. Prac., 24: 10–14.10.1177/088453360832923119244144Open DOISearch in Google Scholar

Sims M.D., Dawson K.A., Newman K.E., Spring P., Hoogell D.M. (2004). Effects of dietary mannan oligosaccharide, bacitracin methylene disalicylate, or both on the live performance and intestinal microbiology of turkeys. Poultry Sci., 83: 1148–1154.10.1093/ps/83.7.114815285506Open DOISearch in Google Scholar

Sławińska A., Siwek M., Żylińska J., Bardowski J., Brzezińska J., Gulewicz K.A., Nowak M., Urbanowski M., Płowiec A., Bednarczyk M. (2014). Influence of synbiotics delivered in ovo on immune organs development and structure. Folia Biol., 62: 277–285.Search in Google Scholar

Smits H.H., Engering A., Van Der Kleij D., De Jong E.C., Schipper K., Van Capel T.M., Zaat B.A., Yazdanbakhsh M., Wierenga E.A., Van Kooyk Y., Kapsenberg M.L. (2005). Selective probiotic bacteria induce IL-10-producing regulatory T cells in vitro by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin. J. Allergy Clin. Immun., 115: 1260–1267.Search in Google Scholar

Sohail M.U., Hume M.E., Byrd J.A., Nisbet D.J., Ijaz A., Sohail A., Shabbir M.Z., Rehman H. (2012). Effect of supplementation of prebiotic mannan-oligosaccharides and probiotic mixture on growth performance of broilers subjected to chronic heat stress. Poultry Sci., 91: 2235–2240.10.3382/ps.2012-0218222912458Open DOISearch in Google Scholar

Spring P., Wenk C., Dawson K.A., Newman K.E. (2000). The effects of dietary mannaoligosaccharides on cecal parameters and the concentrations of enteric bacteria in the ceca of salmonellachallenged broiler chicks. Poultry Sci., 79: 205–211.10.1093/ps/79.2.20510735748Open DOISearch in Google Scholar

Stahl C.H., Callaway T.R., Lincoln L.M., Lonergan S.M., Genovese K.J. (2004). Inhibitory activities of colicins against Escherichia coli strains responsible for postweaning diarrhea and edema disease in swine. Antimicrob. Agents Ch., 48: 3119–3121.10.1128/AAC.48.8.3119-3121.200447849815273129Open DOISearch in Google Scholar

Stern N.J., Cox N.A., Bailey J.S., Berrang M.E., Musgrove M.T. (2001). Comparison of mucosal competitive exclusion and competitive exclusion treatment to reduce Salmonella and Campylobacter spp. colonization in broiler chickens. Poultry Sci., 80: 156–160.10.1093/ps/80.2.15611233003Open DOISearch in Google Scholar

Swiatkiewicz S., Arczewska-Wlosek A. (2012). Prebiotic fructans and organic acids as feed additives improving mineral availability. World's Poult. Sci. J., 68: 269–279.Search in Google Scholar

Thomas W.E., Nilsson L.M., Forero M., Sokurenko E.V., Vogel V. (2004). Shear-dependent ‘stick-and-roll’ adhesion of type 1 fimbriated Escherichia coli. Mol. Microbiol., 53: 1545–1557.Search in Google Scholar

Timmerman H.M., Koning C.J., Mulder L., Rombouts F.M., Beynen A.C. (2004). Monostrain, multistrain and multispecies probiotics – a comparison of functionality and efficacy. Internat. J. Food Microbiol., 96: 219–233.10.1016/j.ijfoodmicro.2004.05.01215454313Open DOISearch in Google Scholar

Uni Z., Ferket P.R., Tako E., Kedar O. (2005). In ovo feeding improves energy status of late-term chicken embryos. Poultry Sci., 84: 764–770.Search in Google Scholar

Vicente J.L., Torres-Rodriguez A., Higgins S.E., Pixley C., Tellez G., Donog-hue A.M., Hargis B.M. (2008). Effect of a selected Lactobacillus spp.-based probiotic on Salmonella enterica serovar enteritidis-infected broiler chicks. Avian Dis., 52: 143–146.10.1637/7847-011107-ResNote18459312Open DOISearch in Google Scholar

Villaluenga C.M., Wardeńska M., Pilarski R., Bednarczyk M., Gulewicz K. (2004). Utilization of the chicken embryo model for assessment of biological activity of different oligosaccharides. Folia Biol., 52: 135–142.Search in Google Scholar

Wang X., Farnell Y.Z., Peebles E.D., Kiess A.S., Wamsley K.G.S., Zhai W. (2016). Effects of prebiotics, probiotics, and their combination on growth performance, small intestine morphology, and resident Lactobacillus of male broilers. Poultry Sci., 95: 1332–1340.Search in Google Scholar

Wu L.Y., Fang Y.J., Tan R.B., Shi K.J. (2009). A comparison of cecal microflora and volatile fatty acid concentration in goslings fed diets supplemented with or without a dried Bacillus subtilis culture. J. Appl. Anim. Res., 36: 231–234.10.1080/09712119.2009.9707066Open DOISearch in Google Scholar

Wu X., Vallance B.A., Boyer L., Bergstrom K.S., Walker J., Madsen K., O’Kusky J.R., Buchan A.M., Jacobson K. (2008). Saccharomyces boulardii ameliorates Citrobacter rodentium-induced colitis through actions on bacterial virulence factors. Am. J. Physiol. Gastr. L., 294: G295–306.Search in Google Scholar

Xu Z.R., Hu C.H, Xia M.S., And X., Wang M.Q. (2003). Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poultry Sci., 82: 1030–1036.10.1093/ps/82.6.103012817461Open DOISearch in Google Scholar

Yamawaki R.A., Milbradt E.L., Coppola M.P., Rodrigues J.C., Andreatti Fil-ho R.L., Padovani C.R., Okamoto A.S. (2013). Effect of immersion and inoculation in ovo of Lactobacillus spp. in embryonated chicken eggs in the prevention of Salmonella Enteritidis after hatch. Poultry Sci., 92: 1560–1563.10.3382/ps.2012-0293623687152Open DOISearch in Google Scholar

Yörük M.A., Gül M., Hayirli A., Macit M. (2004). The effects of supplementation of humate and probiotic on egg production and quality parameters during the late laying period in hens. Poultry Sci., 83: 84–88.10.1093/ps/83.1.8414761088Open DOISearch in Google Scholar

Zhao P.Y., Wang J.P., Kim I.H. (2013). Effect of dietary levan fructan supplementation on growth performance, meat quality, relative organ weight, cecal microflora, and excreta noxious gas emission in broilers. J. Anim. Sci., 91: 5287–5293.10.2527/jas.2012-546424045474Open DOISearch in Google Scholar

eISSN:
2300-8733
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Biotechnologie, Zoologie, Medizin, Veterinärmedizin