Open Access

A three-way catalyst system for a five-stroke engine

   | May 23, 2020

Cite

[1] Adachi S., Hagihara H., The renewed 4-Cylinder Engine Series for Toyota Hybrid System, Fortschritt-Berichte VDI Reihe 12, vol. 749, 2012, 1–24.Search in Google Scholar

[2] Ailloud C., Delaporte B., Schmitz G., Keromnes A., Le Moyne L., Development and Validation of a Five Stroke Engine, SAE Technical Paper 2013-24-0095, 2013, 10.4271/2013-24-0095.10.4271/2013-24-0095Search in Google Scholar

[3] Ajanovic A., Biofuels versus food production: Does biofuels production increase food prices?, Energy vol. 36(4), 2011, 2070-2076, 10.1016/j.energy.2010.05.019.10.1016/j.energy.2010.05.019Search in Google Scholar

[4] Andrych-Zalewska M., Improving the environmental performance of the internal combustion engine by the use in-cylinder catalyst, Combustion Engines, vol. 168(1), 2017, 129–132, 10.19206/CE-2017-120.10.19206/CE-2017-120Search in Google Scholar

[5] Brettschneider J., Berechnung des Luftverhältnisses von Luft-Kraftstoff-Gemischen und des Einflusses von Meßfehlern auf Lambda, Bosch Technische Berichte, vol. 6(4), 1979, 177–186.Search in Google Scholar

[6] Brooke L., Not dead yet: The resilient ICE looks to 2050, Automotive Engineering, vol. 5(4), 2018, 22–23.Search in Google Scholar

[7] Brzeżański M., Mareczek M., Marek W. et al., The realized concept of variable chemical composition fuel gas supply systems, for internal combustion engines, Combustion Engines, vol. 170(3), 2017, 108–114, 10.19206/CE-2017-318.10.19206/CE-2017-318Search in Google Scholar

[8] Carberry B., Grasi G., Guerin S., Jayat F. et al., Pre-Turbocharger Catalyst – Fast catalyst light-off evaluation, SAE Technical Paper 2005-01-2142, 2005, 10.4271/2005-01-2142.10.4271/2005-01-2142Search in Google Scholar

[9] Chen H.-Y., Chang H.-L., Development of Low Temperature Three-Way Catalysts for Future Fuel Efficient Vehicles, Johnson Matthey Technol. Rev., vol. 59 (1), 2015, 64–67, 10.1595/205651315X686011.10.1595/205651315X686011Search in Google Scholar

[10] Cummins C.L., Internal fire, Carnot Press, Wilsonville 2000.Search in Google Scholar

[11] Czerwinski J., Zimmerli Y., Hüssy A. et al., Testing and evaluating real driving emissions with PEMS, Combustion Engines, vol. 173(4), 2018, 17–25, 10.19206/CE-2018-302.10.19206/CE-2018-302Search in Google Scholar

[12] Dumböck O., Schutting E., Eichlseder H., Extended expansion linkage engine: a concept to increase the efficiency, Automotive and Engine Technology, vol. 3, 2018, 83–92, 10.1007/s41104-018-0029-9.10.1007/s41104-018-0029-9Search in Google Scholar

[13] Eichlseder H., Klüting M., Piock W.F., Grundlagen und Technologien des Ottomotors: Der Fahrzeugantrieb, Springer, Vienna 2008.Search in Google Scholar

[14] Fuć P., Merkisz J., Lijewski P. et al., Exhaust emission in NEDC test simulated at a dynamic engine test bed, Combustion Engines, vol. 154(3), 2013, 701–707.Search in Google Scholar

[15] Gaines L., The future of automotive lithium-ion battery recycling: Charting a sustainable course, Sustainable Materials and Technologies, vol. 1–2, 2014, 2–7, 10.1016/j. susmat.2014.10.001.10.1016/j.susmat.2014.10.001Search in Google Scholar

[16] Gęca M.S., Rybak A., Hunicz J., A simulation study into the Atkinson cycle engine utilizing adjustable crank mechanism, IOP Conf. Ser.: Mater. Sci. Eng., vol. 421, 042021, 10.1088/1757-899X/421/4/042021.10.1088/1757-899X/421/4/042021Search in Google Scholar

[17] Goto T., Hatamura K., Takizawa S., Hayama N. et al., Development of V6 Miller Cycle Gasoline Engine, SAE Technical Paper 940198, 1994, 10.4271/940198.10.4271/940198Search in Google Scholar

[18] Goto T., Isobe R., Yamakawa M., Nishida M., The New Mazda Gasoline Engine Skyactiv-G, MTZ Worldwide, vol. 72(6), 2011, 40–47, 10.1365/s38313-011-0063-8.10.1365/s38313-011-0063-8Search in Google Scholar

[19] Hedingerm R., Elbert P., Onder C., Optimal Cold-Start Control of a Gasoline Engine, Energies, vol. 10(10), 2017, 1548, 10.3390/en10101548.10.3390/en10101548Search in Google Scholar

[20] Hwang I., Lee H., Park H. et al., Hyundai-Kia’s Highly Innovative 1.6L GDI Engine for Hybrid Vehicle, Fortschritt-Berichte VDI, Reihe 12: Verkehrstechnik/Fahrzeugtechnik, vol. 799, 2016, 285–303.10.51202/9783186799128-II-285Search in Google Scholar

[21] Iskra A., Babiak M., Wróblewski E., The problems of piston skirt microgeometry in combustion engines, IOP Conf. Ser.: Mater. Sci. Eng., vol. 148, 2016, 012068, 10.1088/1757-899X/148/1/012068.10.1088/1757-899X/148/1/012068Search in Google Scholar

[22] Jääskeläinen H., Miller Cycle Engines, https://www.dieselnet.com/tech/engine_miller-cycle.php (access: 09.11.2018).Search in Google Scholar

[23] Johnson T.V., Joshi A., Directions in vehicle efficiency and emissions, Combustion Engines, vol. 166(3), 2016, 3–8, 10.19206/CE-2016-306.10.19206/CE-2016-306Search in Google Scholar

[24] Kéromnès A., Delaporte B., Schmitz G., Le Moyne L., Development and validation of a 5 stroke engine for range extenders application, Energy Convers. Manag., vol. 82, 2014, 259–267, 10.1016/j.enconman.2014.03.025.10.1016/j.enconman.2014.03.025Search in Google Scholar

[25] Kessels J.T.B.A., Foster D.L., Bleuanus W.A.J., Fuel Penalty Comparison for (Electrically) Heated Catalyst Technology, Oil & Gas Science and Technology – Rev. IFP, vol. 65, No. 1, 2010, 47–54, 10.2516/ogst/2009078.10.2516/ogst/2009078Search in Google Scholar

[26] Kruczyński S.W., Danilczyk W., Ograniczanie szkodliwości gazów wylotowych silników spalinowych poprzez zastosowanie reaktorów katalitycznych, MOTROL Motoryzacja i Energetyka Rolnictwa, vol. 9, 2007, 93–102.Search in Google Scholar

[27] Leman A.M., Rahman F., Jajuli A., Zakaria S., Feriyanto D., Emission Treatment towards Cold Start and Back Pressure in Internal Combustion Engine against Performance of Catalytic Converter: A Review, MATEC Web of Conferences vol. 87, 2017, 02021, 10.1051/matecconf/20178702021.10.1051/matecconf/20178702021Search in Google Scholar

[28] Li T., Wang B., Zheng B., A comparison between Miller and five-stroke cycles for enabling deeply downsized, highly boosted, spark-ignition engines with ultra expansion, Energy Convers. Manage., vol. 123, 2016, 140–152.10.1016/j.enconman.2016.06.038Search in Google Scholar

[29] Lind W.L., Internal-Combustion Engines: Their Principles and Applications to Automobile, Aircraft, and Marine Purposes, Ginn, Boston 1920, 3–4.Search in Google Scholar

[30] Malcev V., Bozhenov A., Schwab R., Müther M., High Power Density High Speed Diesel, MTZ industrial, vol. 6(2), 2016, 14–21, 10.1007/s40353-016-0013-7.10.1007/s40353-016-0013-7Search in Google Scholar

[31] Miller R.H., Supercharging and internal cooling cycle for high output, ASME Trans. vol. 69(4) 1947, 453–464.10.1115/1.4017434Search in Google Scholar

[32] Miller R.H, High expansion, spark ignited, gas burning, internal combustion engines, USA Patent 2 773 490, 11 December 1956.Search in Google Scholar

[33] Mizuno H., Nissan gasoline engine strategy for higher thermal efficiency, Combustion Engines, vol. 169(2), 2017, 141–145, 10.19206/CE-2017-225.10.19206/CE-2017-225Search in Google Scholar

[34] Noga M., Application of VNT Turbocharger in Spark Ignition Engine with Additional Expansion of Exhaust Gases, Technical Gazette vol. 25(6), 2018, 1575–1580, 10.17559/ TV-20160211230747.10.17559/TV-20160211230747Search in Google Scholar

[35] Noga M., Five-stroke Internal Combustion Engine – yesterday, today and tomorrow, IOP Conf. Ser.: Mater. Sci. Eng., vol. 421, 2018, 042058, 10.1088/1757-899X/421/4/042058.10.1088/1757-899X/421/4/042058Search in Google Scholar

[36] Noga M., Selected Issues of the Indicating Measurements in a Spark Ignition Engine with an Additional Expansion Process, Appl. Sci., vol. 7(3), 2017, 295, 10.3390/app7030295.10.3390/app7030295Search in Google Scholar

[37] Noga M., Various aspects of research of the SI engine with an additional expansion process, MATEC Web of Conferences, vol. 118, 2017, 00017, 10.1051/matecconf/201711800017.10.1051/matecconf/201711800017Search in Google Scholar

[38] Noga M., Juda Z., Energy efficiency and equivalent CO2 emissions of a light-duty electric vehicle depending on driving distance, IOP Conf. Ser.: Mater. Sci. Eng., vol. 421, 2018, 022023, 10.1088/1757-899X/421/2/022023.10.1088/1757-899X/421/2/022023Search in Google Scholar

[39] Noga M., Sendyka B., Determination of the Theoretical and Total Efficiency of the Five-Stroke SI Engine, Int J Automot Technol., vol. 15(7), 2014, 1083–1089, 10.1007/s12239-014-0112-9.10.1007/s12239-014-0112-9Search in Google Scholar

[40] Noga M., Sendyka B., Increase of efficiency of SI engine through the implementation of thermodynamic cycle with additional expansion, Bulletin of the Polish Academy of Sciences Technical Sciences, vol. 62(2), 2014, 349–355, 10.2478/bpasts-2014-0034.10.2478/bpasts-2014-0034Search in Google Scholar

[41] Noga M., Sendyka B., New design of the five-stroke SI engine, Journal of KONES vol. 20(1), 2013, 239–246, 10.5604/12314005.1136161.10.5604/12314005.1136161Search in Google Scholar

[42] Pace L., Presti M., An Alternative Way to Reduce Fuel Consumption During Cold Start: The Electrically Heated Catalyst, SAE Technical Paper 2011-24-0178, 2011, 10.4271/2011-24-0178.10.4271/2011-24-0178Search in Google Scholar

[43] Pielecha I., Cieślik W., Borowski P. et al., The development of combustion engines for hybrid drive systems, Combustion Engines, vol. 158(3), 2014, 23–35.10.19206/CE-116934Search in Google Scholar

[44] Pielecha I., Cieślik W., Szałek A., The use of electric drive in urban driving conditions using a hydrogen powered vehicle – Toyota Mirai, Combustion Engines, vol. 172(1), 2018, 51–58, 10.19206/CE-2018-106.10.19206/CE-2018-106Search in Google Scholar

[45] Sass F., Geschichte des deutschen Verbrennungsmotorenbaues – Von 1860 bis 1918, Springer, Berlin-Göttingen-Heidelberg 1962.10.1007/978-3-662-11842-9Search in Google Scholar

[46] Shuai S., Ma X., Li Y. et al., Recent Progress in Automotive Gasoline Direct Injection Engine Technology, Automot. Innov., vol. 1(2), 2018, 95–113,10.1007/s42154-018-0020-1.10.1007/s42154-018-0020-1Search in Google Scholar

[47] Theis J., Getsoian A., Lambert C., The Development of Low Temperature Three-Way Catalysts for High Efficiency Gasoline Engines of the Future, SAE Int. J. Fuels Lubr., vol. 10(2), 2017, 583–592, 10.4271/2017-01-0918.10.4271/2017-01-0918Search in Google Scholar

[48] Wojciechowski K.T., Merkisz J., Fuć P. et al., Prototypical thermoelectric generator for waste heat conversion from combustion engines, Combustion Engines, vol. 154(3), 2013, 60–71.10.19206/CE-116986Search in Google Scholar

[49] Żmudka Z., Postrzednik S., Przybyła G., Realization of the Atkinson-Miller cycle in spark-ignition engine by means of the fully variable inlet valve control system, Archives of Thermodynamics, vol. 35 (3), 2014, 191–205, 10.2478/aoter-2014-0029.10.2478/aoter-2014-0029Search in Google Scholar