Open Access

Heterogeneous photocatalytic removal and reaction kinetics of Rhodamine-B dye with Au loaded TiO2 nanohybrid catalysts

   | Jul 02, 2012

Cite

Li, Q., Mahendra, S., Lyon, D., Brunet, L., Liga, M., Li, D. & Alvarez, P. (2008). Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water. Res. 42, 4591-4602. DOI: 10.1016/j.Watres.2008.08.015.10.1016/j.watres.2008.08.01518804836Search in Google Scholar

Lryba, B., Brożek, P., Piszcz, M. & Morawski, A. W. (2011). New photocatalyst for decomposition of humic acids in photocatalysis and photo-Fenton processes. Pol. J. Chem. Tech. 13(4), 8-14. DOI: 10.2478/v10026-011-0042-5.10.2478/v10026-011-0042-5Search in Google Scholar

Li, X., Wang, L. & Lu, X. (2010). Preparation of silver-modified LiO2 via microwave-assisted method and its photocatalytic activity for toluene degradation. J. Hazard. Mater. 177, 639-647. DOI: 10.1016/j.jhazmat.2009.12.080.10.1016/j.jhazmat.2009.12.08020064688Search in Google Scholar

Chan, S. & Barteau, M. (2005). Preparation of Highly Uniform Ag/TiO2 and Au/TiO2 Supported Nanoparticle Catalysts by Photodeposition. Langmuir. 21(12), 5588-5595. DOI: 10.1021/la046887k.10.1021/la046887k15924494Search in Google Scholar

Hou, L. R., Yuan, C. Z. & Peng, Y. (2007). Synthesis and photocatalytic property of SnO2/TiO2 nanotubes composites. J. Hazard. Mater. 139, 310-315. DOI: 10.1016/j.jhazmat.2006.06.035.10.1016/j.jhazmat.2006.06.03516905248Search in Google Scholar

Li, J. & Zeng, H. C. (2006). Preparation of Monodisperse Au/TiO2 Nanocatalysts via Self-Assembly. Chem. Mater. 18(18), 4270-4277. DOI: 10.1021/cm060362r.10.1021/cm060362rSearch in Google Scholar

Li, H., Bian, Z., Zhu, J., Huo, Y., Li, H. & Lu, Y. (2007). Mesoporous Au/TiO2 Nanocomposites with Enhanced Photocatalytic Activity. J. Am. Chem. Soc. 129(15), 4538-4539. DOI: 10.1021/ja069113u.10.1021/ja069113u17381091Search in Google Scholar

Jain, R., Mathur, M., Sikarwar, S. & Mittal, A. (2007). Removal of the hazardous dye Rhodamine B from photocatalytic and adsorption treatments. J. Environ. Manag. 85, 956-964. 10.1016/j.jenvman.2006.11.002.10.1016/j.jenvman.2006.11.00217239520Search in Google Scholar

Zhang, X. T., Zhou, G. W., Zhang, H. Y., Wu, C. C. & Song, H. B. (2011). Characterization and activity of visible light-driven TiO2 photocatalysts co-doped with nitrogen and lanthanum. Transition. Met. Chem. 36, 217-222. DOI: 10.1007/s11243-010-9457-8.10.1007/s11243-010-9457-8Search in Google Scholar

Yusuke, I., Mizuki, M. & Makoto. O. (2010). Efficient Visible-Light-Induced Photocatalytic Activity on Gold-Nanoparticle-Supported Layered Titanate. J. Am. Chem. Soc. 132(47), 16762-16764. DOI: 10.1021/ja1083514.10.1021/ja108351421058709Search in Google Scholar

Li, F. B. & Li, X. Z. (2002). The enhancement of photodegradation efficiency using Pt-TiO2 catalyst. Chemosphere. 48(10), 1103-1111. DOI: 10.1016/S0045-6535(02)00201-1.10.1016/S0045-6535(02)00201-1Search in Google Scholar

Zhong, H. E., Yang, S. G., Ju, Y. M. & Sun. C. (2009). Microwave photocatalytic degradation of Rhodamine B using TiO2 supported on activated carbon: Mechanism implication. J. Environ. SCi. 21(2), 268-272. DOI: 10.1016/S1001-0742(08)62262-7.10.1016/S1001-0742(08)62262-7Search in Google Scholar

Pedro, J. S., Valente, S., Padilha, P. M. & Florentino, A. O. (2006). Studies in the adsorption and kinetics of photodegradation of a model compound for heterogeneous photocatalysis onto TiO2. Chemosphere. 64(7), 1128-1133. DOI: 10.1016/j.chemosphere.2005.11.050.10.1016/j.chemosphere.2005.11.05016405950Search in Google Scholar

Tsunoyama, H., Ichikuni, N. & Tsukuda, T. (2008). Microfluidic Synthesis and Catalytic Application of PVP-Stabilized, ~1 nm Gold Clusters. Langmuir. 24(20), 11327-11330. DOI: 10.1021/-la801372j.Search in Google Scholar

eISSN:
1899-4741
ISSN:
1509-8117
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering