1. bookVolume 75 (2020): Issue 1 (April 2020)
    Applied Mathematics'19
Journal Details
License
Format
Journal
eISSN
1338-9750
First Published
12 Nov 2012
Publication timeframe
3 times per year
Languages
English
access type Open Access

Finite Volume Scheme for AMSS Model

Published Online: 24 Apr 2020
Page range: 49 - 62
Received: 11 Jul 2019
Journal Details
License
Format
Journal
eISSN
1338-9750
First Published
12 Nov 2012
Publication timeframe
3 times per year
Languages
English
Abstract

We propose a new finite volume numerical scheme for the approximation of the Affine Morphological Scale Space (AMSS) model. We derive the basic scheme and its iterative improvement. For both schemes, several numerical experiments using examples where the exact solution is known are presented. Then the numerical errors and experimental order of convergence of the proposed schemes is studied.

Keywords

MSC 2010

[1] ALVAREZ, L.—GUICHARD, F.—LIONS, P.-L.—MOREL, J.-M.: Axioms and fundamental equations of image processing, Arch. Rational Mech. Anal. 123 (1993), 199–257.10.1007/BF00375127Search in Google Scholar

[2] BARLES, G.—SOUGANIDIS, P. E.: Convergence of approximation schemes for fully nonlinear second order equations,Asymptotic Anal. 4 (1991), 271–283.10.3233/ASY-1991-4305Search in Google Scholar

[3] CARLINI, E.—FERRETTI, R.: A Semi-Lagrangian approximation for the AMSS model of image processing, Appl. Numer. Math. 73, (2013), 16–32.10.1016/j.apnum.2012.07.003Search in Google Scholar

[4] CATTÉ, F.—LIONS, P.-L.—MOREL, J.-M.—COLL, T.: Image selective smoothing and edge detection by nonlinear diffusion, SIAM J. Numer. Anal. 29 (1992), 182–193.10.1137/0729012Search in Google Scholar

[5] CHEN, Y.-G.—GIGA, Y.—GOTO, S.: Uniqueness and existence of viscosity solutions ofgeneralized mean curvature flow equations,J.Differ. Geom. 33 (1991), 749–786.10.4310/jdg/1214446564Search in Google Scholar

[6] DECKELNICK, K.—DZIUK, G.: Convergence of numerical schemes for the approximation of level set solutions to mean curvature flow,In:Numerical methods for viscosity solutions and applications (Heraklion, 1999). (Maurizio Falcone, ed. et al.), Ser. Adv. Math. Appl. Sci. Vol. 59, World Sci. Publ., River Edge, NJ, 2001, pp. 77–93.10.1142/9789812799807_0005Search in Google Scholar

[7] EVANS, L.—SPRUCK, J.: Motion of level sets by mean curvature. I,J. Differ.Geom. 33 (1991), 635–681.10.4310/jdg/1214446559Search in Google Scholar

[8] EYMARD, R.—HANDLOVIČOVÁ, A. H.—MIKULA, K.: Study of a finite volume scheme for regularized mean curvature flow level set equation, J. Numer. Anal. 31 (2011), no. 3, 813–846.Search in Google Scholar

[9] EYMARD, R.—GALLOUËT, T.—HERBIN, R.: Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes. SUSHI: A scheme using stabilization and hybrid interfaces, IMA J. Numer. Anal. 30 (2010), no. 4, 1009–1043Search in Google Scholar

[10] LINDEBERG, T.: Scale-space theory in computer vision.In:The Kluwer International Series in Engineering and Computer Science. Vol. 256, Kluwer Academic Publishers, Dordrecht, 1993.Search in Google Scholar

[11] LINDEBERG, T.: Generalized Gaussian scale-space Axiomatics comprising linear scale-space, affine scale-space and spatio-temporal scale-space, J. Math. Imaging Vision 40 (2011), no. 1, 36–81.Search in Google Scholar

[12] MIKULA, K.—ŠEVČOVIČ, D.: Solution of nonlinearly curvature driven evolution of plane curves, Appl. Numer. Math. 31 (1999), 191–207.10.1016/S0168-9274(98)00130-5Search in Google Scholar

[13] MIKULA, K.—URBÁN, J.—KOLLÁR, M.—AMBROZ, M.—JAROLÍNEK, J.— ŠIBÍK, I. —ŠIBÍKOVÁ, M.: An automated segmentation of natura 2000 habitats from sentinel-2 optical data, Discrete and Continuous Dynamicla Systems Ser. S. (to appear)Search in Google Scholar

[14] OSHER, S.—FEDKIW, R.: Level set methods and dynamic implicit surfaces.In: Applied Mathematical Sciences, Vol. 153, Springer-Verlag, New York, NY, 2003.Search in Google Scholar

[15] OSHER, S.—SETHIAN, J. A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations,J. Comput.Phys. 79 (1988), 12–49.10.1016/0021-9991(88)90002-2Search in Google Scholar

[16] PERONA, P.—MALIK, J.: Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence 12 (1990), 629–639.10.1109/34.56205Search in Google Scholar

[17] POLAKOVIČOVÁ, Z.: Numerical Scheme for AMSS model for image processing. Diploma Thesis Dept. of Math and Descr. Geom. Fac. of Civil Engineering STU Bratislava, (2018). (In Slovak)Search in Google Scholar

[18] SAPIRO, G.—TANNENBAUM, A.: Affine invariant scale-space, Internat. J. Comput. Vision 11 (1993), 25–44.10.1007/BF01420591Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo